• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 16
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algoritmos de aproximação para problemas de empacotamento em faixa com restrições de descarregamento / Approximation algorithms for the strip packing problem with unloading constraints

Silveira, Jefferson Luiz Moisés da, 1986- 18 August 2018 (has links)
Orientadores: Eduardo Candido Xavier, Flávio Keidi Miyazawa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-18T03:33:12Z (GMT). No. of bitstreams: 1 Silveira_JeffersonLuizMoisesda_M.pdf: 1516196 bytes, checksum: b3f9127c1017ef29bf9c429bb93e1a0c (MD5) Previous issue date: 2011 / Resumo: Neste trabalho estudamos problemas de empacotamento com restrições de descarregamento considerados NP-difíceis. Estes problemas possuem aplicações nas áreas de logística e roteamento. Assumindo a hipótese de que P ? NP, sabemos que não existem algoritmos eficientes para resolver tais problemas. Uma das abordagens consideradas para tratar tais problemas é a de algoritmos de aproximação, que são algoritmos eficientes (complexidade de tempo polinomial) e que geram soluções com garantia de qualidade. Estudamos técnicas para o desenvolvimento de algoritmos aproximados e também alguns algoritmos para problemas de empacotamento online que podem ser utilizados na resolução do problema estudado. Propomos também algumas heurísticas para o problema e, além disto, provamos que duas destas heurísticas possuem garantias de aproximação com fatores constantes. Realizamos testes computacionais com estes algoritmos propostos. Dentre estes, a heurística GRASP foi a que obteve melhores resultados para as instâncias de teste consideradas / Abstract: In this work we study some NP-hard packing problems with unloading constraints. These problems have applications in logistics and routing problems. Assuming P ? NP, there are no efficient algorithms to solve these problems. On way to deal with these problems is using approximation algorithms, that are efficient algorithms (polynomial time complexity) that produce solutions with quality guarantee. We study techniques used in the development of approximation algorithms and some algorithms for online packing problems which can be used to solve the considered problem. We propose some heuristics for the problem and prove that two of them have constant approximation guarantees. We also perform computational tests with the proposed algorithms. Among them, the GRASP heuristic achieved the best results on the considered instances / Mestrado / Teoria da Computação / Mestre em Ciência da Computação
2

Álgebra linear: secções cônicas e aplicações / Irregular bin packing considering loading balancing

Pereira, Robson Edvaldo da Silva 30 June 2017 (has links)
Neste trabalho desenvolvemos o estudo da álgebra linear, secções cônicas e aplicações. Apresentamos os conceitos mais importantes da álgebra linear, estudando os espaços vetorias, subespaços vetoriais, matriz de mudança de base, transformações lineares e produto interno. O principal resultado do trabalho é o teorema espectral que fornece ferramentas para se estudar as secções cônicas não elementares, ou seja, aquelas nas quais uma parábola, elipse ou hipérbole são apresentadas com seus eixos não paralelos aos eixos coordenados do plano cartesiano. Uma vez de posse deste teorema é mostrado um processo prático no qual transformamos uma equação ax2 +bxy +cy2 +dx +ey + g = 0 na equação k1 (x\')2 + k2 (y\')2 + (dx1 + ey1) x\' + (dx2 + ey2) y\' + g = 0 sem o termo misto xy, onde após a eliminação deste, podemos deduzir a equação da cônica identificando assim esta curva. Apresentamos exemplos de cônicas com eixos paralelos e não paralelos aos coordenados do plano cartesiano e utilizamos o software geogebra para visualização. Também discutimos algumas aplicações das cônicas como trajetória de corpos celestes (planeta Terra e um cometa), princípio de reflexão da parábola mostrando o porquê das antenas e dos captadores de ondas sonoras serem parabólicos. Demonstramos um teorema que denominei de identificador de uma curva cônica pois com ele é possível classificar a cônica sem realizar o processo prático, apenas para isso identificamos através da equação ax2 +bxy + cy2 +dx + ey +g = 0, quais os valores de a;b e c e feito isto calculamos o discriminante b2 - 4ac, analisamos os sinais e a nulidade, ou seja, se é maior que zero, menor que zero ou igual a zero, assim é possível classificar a cônica. / The paper develops the study of linear algebra, conic sections and applications. I present the most important concepts of linear algebra, studying vector spaces, vector subspaces, base change matrix, linear transformations, internal product. The main result of the work is the spectral theorem, which provides tools to study the non-elementary conic sections, that is, those in which a parabola, ellipse or hyperbola are presented with their axes not parallel to the cartesian planes coordinate axes. Using this theorem we show a practical process in which we transform an equation ax2 +bxy + cy2 +dx +ey +g = 0 into the equation k1 (x\')2 +k2 (y\')2 + (dx1 +ey1) x\' (dx2 + ey2) y\' +g = 0 without the mixed term xy, where after its elimination we can deduce the conic equation thus identifying the curve we are looking for. I present examples of conic with parallel and non-parallel axes to the coordinates of the Cartesian plane and use the geogebra software for visualization. I discuss some applications of the conic as a trajectory of celestial bodies (planet Earth and a comet), principle of reflection of parabola showing why the antennas and sound wave pickups are parabolics. I demonstrate a theorem that I named the identifier of a conic curve, with it it is possible to classify the conic without realizing the practical process only for this. I identify through the equation ax2 +bxy + cy2 +dx + ey + g = 0, what are the values of a;b, and c and, with this done, I compute the discriminant b2 - 4ac and analyze the signs and the nullity, that is, if it is greater than zero, less than zero or equal to zero, therefore is possible to classify the conic.
3

Empacotamento de itens irregulares considerando balanceamento da carga / Irregular bin packing considering loading balancing

Silva, Raquel Akemi Okuno Kitazume da 21 June 2017 (has links)
O problema de empacotamento de itens irregulares com balanceamento da carga é encontrado no carregamento de aviões, caminhões e navios. O objetivo é empacotar itens irregulares utilizando o menor número de recipientes possível de forma que os recipientes estejam balanceados, que os itens não se sobreponham e estejam inteiramente contidos no recipiente. Neste trabalho, propomos três heurísticas bases com três variações cada para o problema com recipientes retangulares e irregulares. As heurísticas utilizam abordagens diferentes para representar os itens e para fazer o balanceamento. Uma das heurísticas utiliza malha para representação dos itens e faz o balanceamento dividindo o recipiente em quadrantes e revezando a alocação dos itens entre eles de forma que o balanceamento é feito de forma indireta. Tal heurística resolve o problema tanto para recipientes retangulares quanto irregulares. A segunda heurística utiliza a representação dos itens por polígonos e impossibilita a sobreposição de itens utilizando a técnica do nofit polygon. A heurística constrói a solução item por item, sem posições fixas e a cada item alocado, os itens são deslocados em direção ao centro de gravidade desejado do recipiente. Esta heurística resolve apenas problemas com recipientes retangulares. A última heurística é uma adaptação da heurística anterior para a resolução do problema com recipientes irregulares, de forma que o problema é resolvido em duas fases. Cada heurística base possui três variações cada, totalizando nove heurísticas. As heurísticas foram comparadas com outro trabalho da literatura e conseguiram melhorar os resultados para nove das dezenove instâncias testadas. / The irregular bin packing problem with load balancing is found in the loading of airplanes, trucks and ships. The aim is to use as few bins as possible to pack all the items so that all bins are balanced, items do not overlap and are fully contained in the bin. In this work, we propose three base heuristics with three variations each for the problem with rectangular and irregular bin. The three heuristics use different approaches to represent the items and to balance the bin. One of the heuristics uses a grid to represent the items and does the balancing by dividing the container into quadrants and alternating the allocation of items between them so that the balancing is done indirectly. Such heuristic solves the problem for both rectangular and irregular bins. The second heuristic uses the representation of items by polygons and uses the nofit polygon technique. The heuristic constructs the solution item by item, with no fixed positions and with each item allocated, the items are shifted towards the desired center of gravity of the bin. This heuristic only solves problems with rectangular bins. The last heuristic is an adaptation of the previous one to solve the problem with irregular bins, so that the problem is solved in two phases. Each base heuristic has three variations, totaling nine heuristics. The heuristics were compared with other work in the literature and managed to improve the results for nine of the nineteen instances tested.
4

Problema da mochila com itens irregulares / Irregular knapsack problems

Del Valle, Aline Marques 17 August 2018 (has links)
Orientador: Eduardo Candido Xavier / Dissertação (mestrado) - Universidade Estadual de Campinas, Insituto de Computação / Made available in DSpace on 2018-08-17T16:49:45Z (GMT). No. of bitstreams: 1 DelValle_AlineMarques_M.pdf: 1217777 bytes, checksum: 66f10d1b6b4533727cbe82431f97660d (MD5) Previous issue date: 2010 / Resumo: Nesta dissertação, estudamos problemas de empacotamento com itens irregulares. Estamos particularmente interessados no Problema da Mochila Bidimensional: dados um recipiente de tamanho W x H e uma lista de itens bidimensionais, o objetivo é empacotar um subconjunto dos itens de forma a maximizar a área dos itens empacotados. Existem diversos trabalhos que lidam com problemas para itens e recipientes bidimensionais com forma regular (retangular). No entanto, são poucos os estudos que tratam de itens com formas irregulares. Nós propomos algoritmos de empacotamento para itens irregulares em recipientes limitados baseados no uso de No-Fit-Polygon (NFP). Este trabalho apresenta uma heurística GRASP para a versão restrita do Problema da Mochila: uma solução inicial gulosa é gerada e, em seguida, utiliza-se um algoritmo de busca local para melhorar solução atual. Uma estratégia híbrida também foi proposta para versão irrestrita do Problema da Mochila. Ela divide-se em passos de empacotamento de itens irregulares e empacotamento de itens regulares. Testamos os algoritmos com instâncias adaptadas do problema de Strip Packing. O GRASP obteve empacotamentos ótimos para várias instancias testadas e, mesmo para as instâncias em que o algoritmo não obteve resultados ótimos, os empacotamentos obtidos tiveram boa taxa de ocupação, com valores relativamente próximos do ótimo. O tempo de execução do algoritmo foi razoável. Na estratégia híbrida, obtiveram-se empacotamentos bons para a maioria das instâncias, com taxa de ocupação acima de 90% e tempos de execução relativamente baixos / Abstract: In this work, we study packing problems dealing with two dimensional irregular items. We are particularly interested in the knapsack version of the problem: given a container with size W x H and a list of two dimensional items, the goal is to pack a subset of items such that the total area of packed items is maximized. There are several works that deal with problems for the case where items and containers have regular shapes (rectangular). However, only a few studies deal with items with irregular shapes. We propose algorithms for packing irregular items in limited containers based on the use of No-Fit-Polygon (NFP). This work presents a GRASP algorithm for the restricted version of the Knapsack Problem: first, a greedy initial solution is generated, then, the local search algorithm is used to improve the current solution. A hybrid strategy has also been proposed for the unrestricted version of the Knapsack Problem. It is divided into steps of packing irregular items and packing regular items. We tested the algorithms using adapted instances for the Strip Packing problem. The GRASP algorithm achieved optimal packings for several of the tested instances, and, even for those that the algorithm did not, the obtained packings had a good occupancy rate, with values relatively close to the optimum. The runtime of the algorithm was reasonable. In the hybrid strategy, we obtained good packings for most of the instances, with occupancy rates above 90% and relatively low execution times / Mestrado / Teoria da Computação / Mestre em Ciência da Computação
5

Algoritmos para problemas de corte e empacotamento / Algorithms for cutting and packing problems

Queiroz, Thiago Alves de 18 August 2018 (has links)
Orientador: Flávio Keidi Miyazawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-18T01:07:44Z (GMT). No. of bitstreams: 1 Queiroz_ThiagoAlvesde_D.pdf: 1460601 bytes, checksum: 0d83e25259c427329e25174c2e729e77 (MD5) Previous issue date: 2010 / Resumo: Problemas de Corte e Empacotamento são, em sua maioria, NP-difíceis e não existem algoritmos exatos de tempo polinomial para tais se for considerado P ¿ NP. Aplicações práticas envolvendo estes problemas incluem a alocação de recursos para computadores; o corte de chapas de ferro, de madeira, de vidro, de alumínio, peças em couro, etc.; a estocagem de objetos; e, o carregamento de objetos dentro de contêineres ou caminhões-baú. Nesta tese investigamos problemas de Corte e Empacotamento NP-difíceis, nas suas versões bi- e tridimensionais, considerando diversas restrições práticas impostas a tais, a saber: que permitem a rotação ortogonal dos itens; cujos cortes sejam feitos por uma guilhotina; cujos cortes sejam feitos por uma guilhotina respeitando um número máximo de estágios de corte; cujos cortes sejam não-guilhotinados; cujos itens tenham demanda (não) unitária; cujos recipientes tenham tamanhos diferentes; cujos itens sejam representados por polígonos convexos e não-convexos (formas irregulares); cujo empacotamento respeite critérios de estabilidade para corpos rígidos; cujo empacotamento satisfaça uma dada ordem de descarregamento; e, cujos empacotamentos intermediários e final tenham seu centro de gravidade dentro de uma região considerada "segura". Para estes problemas foram propostos algoritmos baseados em programação dinâmica; modelos de programação inteira; técnicas do tipo branch-and-cut; heurísticas, incluindo as baseadas na técnica de geração de colunas; e, meta-heurísticas como o GRASP. Resultados teóricos também foram obtidos. Provamos uma questão em aberto levantada na literatura sobre cortes não-guilhotinados restritos a um conjunto de pontos. Uma extensiva série de testes computacionais considerando instâncias reais e várias outras geradas de forma aleatória foram realizados com os algoritmos desenvolvidos. Os resultados computacionais, sendo alguns deles comparados com a literatura, comprovam a validade dos algoritmos propostos e a sua aplicabilidade prática para resolver os problemas investigados / Abstract: Several versions of Cutting and Packing problems are considered NP-hard and, if we consider that P ¿ NP, we do not have any exact polynomial algorithm for solve them. Practical applications arises for such problems and include: resources allocation for computers; cut of steel, wood, glass, aluminum, etc.; packing of objects; and, loading objects into containers and trucks. In this thesis we investigate Cutting and Packing problems that are NP-hard considering theirs two- and three-dimensional versions, and subject to several practical constraints, that are: that allows the items to be orthogonally rotated; whose cuts are guillotine type; whose cuts are guillotine type and performed in at most k stages; whose cuts are non-guillotine type; whose items have varying and unit demand; whose bins are of variable sizes; whose items are represented by convex and non-convex polygons (irregular shapes); whose packing must satisfy the conditions for static equilibrium of rigid bodies; whose packing must satisfy an order to unloading; and, whose intermediaries and resultant packing have theirs center of gravity inside a safety region; Such cutting and packing problems were solved by dynamic programming algorithms; integer linear programming models; branch-and-cut algorithms; several heuristics, including those ones based on column generation approaches, and metaheuristics like GRASP. Theoretical results were also provided, so a recent open question arised by literature about non-guillotine patterns restricted to a set of points was demonstrated. We performed an extensive series of computational experiments for algorithms developed considering several instances presented in literature and others generated at random. These results, some of them compared with the literature, validate the approaches proposed and suggest their applicability to deal with practical situations involving the problems here investigated / Doutorado / Doutor em Ciência da Computação
6

Tempo de convergencia para o equilíbrio de Nash nos jogos empacotamento de itens e balanceamento de carga / Convergence time to the Nash equilibrium in packing and load balancing games

Vignatti, André Luís 15 August 2018 (has links)
Orientador: Flavio Keidi Miyazawa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-15T17:39:45Z (GMT). No. of bitstreams: 1 Vignatti_AndreLuis_D.pdf: 822237 bytes, checksum: d9b8ad70708a9313f0d1ed9d64d39302 (MD5) Previous issue date: 2010 / Resumo: Nesta tese, estudamos versões de teoria dos jogos dos problemas de empacotamento de itens e balanceamento de carga. Consideramos que a implementação de um algoritmo centralizado de controle é inviável, fazendo com que as entidades participantes do sistema ajam de maneira egoísta. Assim, a escolha egoísta de estratégias pelas entidades pode ou não levar a um estado estável do sistema, chamado de equilíbrio de Nash. Dependendo das condições definidas pelo modelo utilizado, devemos embutir certas regras para as entidades, contanto que as entidades tenham incentivo de utilizá-las e que, além disso, façam com que o sistema alcance um equilíbrio de Nash. Os principais resultados desta tese são relativos ao tempo de convergência para o equilíbrio de Nash, ou seja, buscamos saber quantas vezes os agentes mudam suas estratégias até alcançarem o equilíbrio de Nash, seja agindo de maneira completamente egoísta ou seguindo certas regras. Para o jogo de empacotamento de itens, apresentamos limitantes teóricos para o tempo de convergência, olhando ambos os casos de atualizações seqüenciais ou simultâneas das estratégias. Para o jogo de balanceamento de carga consideramos um modelo distribuído assíncrono com entidades heterogêneas, apresentando algumas regras que as entidades devem seguir e realizamos simulações para comparar as regras apresentadas / Abstract: In this thesis, we study game-theorical versions of the bin packing and load balancing problems. We consider that the implementation of a centralized controller algorithm is not feasible, making the entities that participate in the system act in a selfish way. Thus, the selfish choice of the strategies by the entities may or may not lead to a stable state of the system, called Nash equilibrium. Depending on the conditions defined by the considered model, we must build certain rules for entities, provided that the entities have incentive to use them and also make the system reach a Nash equilibrium. The main results of this thesis are related to the convergence time to Nash equilibrium, i.e., we seek to know how many times the agents change their strategies until they reach a Nash equilibrium, whether they act in a completely selfish way or follow certain rules. For the bin packing game, we present theoretical bounds for the convergence time, considering both the cases of sequential or simultaneous updates of the strategies. For the load balancing game, we consider an asynchronous distributed model with heterogeneous entities, presenting some rules that the entities must follow and we carry out simulations to compare the presented rules / Doutorado / Teoria da Computação / Doutor em Ciência da Computação
7

Álgebra linear: secções cônicas e aplicações / Irregular bin packing considering loading balancing

Robson Edvaldo da Silva Pereira 30 June 2017 (has links)
Neste trabalho desenvolvemos o estudo da álgebra linear, secções cônicas e aplicações. Apresentamos os conceitos mais importantes da álgebra linear, estudando os espaços vetorias, subespaços vetoriais, matriz de mudança de base, transformações lineares e produto interno. O principal resultado do trabalho é o teorema espectral que fornece ferramentas para se estudar as secções cônicas não elementares, ou seja, aquelas nas quais uma parábola, elipse ou hipérbole são apresentadas com seus eixos não paralelos aos eixos coordenados do plano cartesiano. Uma vez de posse deste teorema é mostrado um processo prático no qual transformamos uma equação ax2 +bxy +cy2 +dx +ey + g = 0 na equação k1 (x\')2 + k2 (y\')2 + (dx1 + ey1) x\' + (dx2 + ey2) y\' + g = 0 sem o termo misto xy, onde após a eliminação deste, podemos deduzir a equação da cônica identificando assim esta curva. Apresentamos exemplos de cônicas com eixos paralelos e não paralelos aos coordenados do plano cartesiano e utilizamos o software geogebra para visualização. Também discutimos algumas aplicações das cônicas como trajetória de corpos celestes (planeta Terra e um cometa), princípio de reflexão da parábola mostrando o porquê das antenas e dos captadores de ondas sonoras serem parabólicos. Demonstramos um teorema que denominei de identificador de uma curva cônica pois com ele é possível classificar a cônica sem realizar o processo prático, apenas para isso identificamos através da equação ax2 +bxy + cy2 +dx + ey +g = 0, quais os valores de a;b e c e feito isto calculamos o discriminante b2 - 4ac, analisamos os sinais e a nulidade, ou seja, se é maior que zero, menor que zero ou igual a zero, assim é possível classificar a cônica. / The paper develops the study of linear algebra, conic sections and applications. I present the most important concepts of linear algebra, studying vector spaces, vector subspaces, base change matrix, linear transformations, internal product. The main result of the work is the spectral theorem, which provides tools to study the non-elementary conic sections, that is, those in which a parabola, ellipse or hyperbola are presented with their axes not parallel to the cartesian planes coordinate axes. Using this theorem we show a practical process in which we transform an equation ax2 +bxy + cy2 +dx +ey +g = 0 into the equation k1 (x\')2 +k2 (y\')2 + (dx1 +ey1) x\' (dx2 + ey2) y\' +g = 0 without the mixed term xy, where after its elimination we can deduce the conic equation thus identifying the curve we are looking for. I present examples of conic with parallel and non-parallel axes to the coordinates of the Cartesian plane and use the geogebra software for visualization. I discuss some applications of the conic as a trajectory of celestial bodies (planet Earth and a comet), principle of reflection of parabola showing why the antennas and sound wave pickups are parabolics. I demonstrate a theorem that I named the identifier of a conic curve, with it it is possible to classify the conic without realizing the practical process only for this. I identify through the equation ax2 +bxy + cy2 +dx + ey + g = 0, what are the values of a;b, and c and, with this done, I compute the discriminant b2 - 4ac and analyze the signs and the nullity, that is, if it is greater than zero, less than zero or equal to zero, therefore is possible to classify the conic.
8

Problema de empacotamento em faixa com restrições de ordem e estabilidade / Strip packing problem with constraints in order and stability

Silva, Fabrício Luis Santos da 19 August 2018 (has links)
Orientador: Flávio Keidi Miyazawa / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T17:20:46Z (GMT). No. of bitstreams: 1 Silva_FabricioLuisSantosda_M.pdf: 657410 bytes, checksum: 65ac7a297f6547a9ac70dfa42604f1ce (MD5) Previous issue date: 2010 / Resumo: Neste trabalho lidamos com o problema de Empacotamento em Faixa Bidimensional considerando o caso em que os itens devem ser dispostos de forma a manter o empacotamento estável e satisfazer uma ordem de descarregamento imposta. Consideramos o caso em que a orientação dos itens é fixa. Definimos uma metodologia para analisar a estabilidade do empacotamento observando as condições de equilíbrio estático para corpos rígidos. Desenvolvemos heurísticas e formulamos um programa linear inteiro para o problema de Empacotamento em Faixa sujeito a tais restrições. A resolução da formulação inteira ocorre através de uma estratégia do tipo branch-and-cut. As restrições de estabilidade foram inseridas como planos de corte de maneira a remover empacotamentos que não são estáveis. Em nossos experimentos computacionais, vemos que o modelo proposto é adequado para lidar com instâncias de pequeno até médio porte, dentro de um tempo computacional razoável / Abstract: This paper investigates the Two-Dimensional Strip Packing Problem considering the case in which the items should be arranged to form a stable packing and satisfy an order of unloading, so that after unloading, the packing is still stable. We consider the case where the items are oriented and rotations are not allowed. We present a methodology to analyze the stability of the packing observing the conditions for static equilibrium of rigid bodies. We present heuristics and formulate an integer linear programming model for the Strip Packing problem considering such constraints. To solve the integer formulation, we develop a branch-and-cut approach. For each integer solution obtained during the branch-and-cut algorithm, corresponding to a non-stable packing, we insert a cutting plane for which this integer solution is not satisfied. In our computational experiments, we see that the proposed model is suitable to deal with small and mid-sized instances. Some optimal solutions were obtained after few hours of CPU processing / Mestrado / Mestre em Ciência da Computação
9

Empacotamento de itens irregulares considerando balanceamento da carga / Irregular bin packing considering loading balancing

Raquel Akemi Okuno Kitazume da Silva 21 June 2017 (has links)
O problema de empacotamento de itens irregulares com balanceamento da carga é encontrado no carregamento de aviões, caminhões e navios. O objetivo é empacotar itens irregulares utilizando o menor número de recipientes possível de forma que os recipientes estejam balanceados, que os itens não se sobreponham e estejam inteiramente contidos no recipiente. Neste trabalho, propomos três heurísticas bases com três variações cada para o problema com recipientes retangulares e irregulares. As heurísticas utilizam abordagens diferentes para representar os itens e para fazer o balanceamento. Uma das heurísticas utiliza malha para representação dos itens e faz o balanceamento dividindo o recipiente em quadrantes e revezando a alocação dos itens entre eles de forma que o balanceamento é feito de forma indireta. Tal heurística resolve o problema tanto para recipientes retangulares quanto irregulares. A segunda heurística utiliza a representação dos itens por polígonos e impossibilita a sobreposição de itens utilizando a técnica do nofit polygon. A heurística constrói a solução item por item, sem posições fixas e a cada item alocado, os itens são deslocados em direção ao centro de gravidade desejado do recipiente. Esta heurística resolve apenas problemas com recipientes retangulares. A última heurística é uma adaptação da heurística anterior para a resolução do problema com recipientes irregulares, de forma que o problema é resolvido em duas fases. Cada heurística base possui três variações cada, totalizando nove heurísticas. As heurísticas foram comparadas com outro trabalho da literatura e conseguiram melhorar os resultados para nove das dezenove instâncias testadas. / The irregular bin packing problem with load balancing is found in the loading of airplanes, trucks and ships. The aim is to use as few bins as possible to pack all the items so that all bins are balanced, items do not overlap and are fully contained in the bin. In this work, we propose three base heuristics with three variations each for the problem with rectangular and irregular bin. The three heuristics use different approaches to represent the items and to balance the bin. One of the heuristics uses a grid to represent the items and does the balancing by dividing the container into quadrants and alternating the allocation of items between them so that the balancing is done indirectly. Such heuristic solves the problem for both rectangular and irregular bins. The second heuristic uses the representation of items by polygons and uses the nofit polygon technique. The heuristic constructs the solution item by item, with no fixed positions and with each item allocated, the items are shifted towards the desired center of gravity of the bin. This heuristic only solves problems with rectangular bins. The last heuristic is an adaptation of the previous one to solve the problem with irregular bins, so that the problem is solved in two phases. Each base heuristic has three variations, totaling nine heuristics. The heuristics were compared with other work in the literature and managed to improve the results for nine of the nineteen instances tested.
10

Resolução de problemas de empacotamento de itens irregulares usando técnicas de programação não-linear / Solving irregular packing problems using non-linear programming techniques

Polo, Jeinny Maria Peralta 11 May 2018 (has links)
Os problemas de empacotamento de itens irregulares são problemas de corte e empacotamento, nos quais peças irregulares de menor tamanho (que chamamos de itens) devem ser empacotados inteiramente em uma peça grande (que chamamos de placa), obedecendo a restrições de nãosobreposição e minimizando as dimensões da placa. Para garantir a não-sobreposição, fazemos uso de retas separadoras, quer dizer, retas que separam um item de outro. Apresentamos modelos de programação não-linear para problemas de empacotamentos de itens regulares e irregulares que rotacionam livremente. Os itens podem ser círculos, polígonos convexos e não-convexos. A principal vantagem dos modelos é a simplicidade, já que estes utilizam somente conceitos básicos de geometria. Usamos o algoritmo de programação não-linear IPOPT (um algoritmo de tipo de pontos interiores), que faz parte da COIN-OR, para a resolução dos problemas. Testes computacionais foram executados usando instâncias conhecidas da literatura e os resultados foram comparados com resultados apresentados na literatura, obtidos com outras metodologias que também usam rotações livre, mostrando que nossos modelos são competitivos. Propomos também o uso de parábolas separadoras para a verificação de não-sobreposição na modelagem do problema, o que pode trazer ganhos computacionais e melhor qualidade de soluções. / The irregular packing problems are cutting and packing problems, in which smaller irregular pieces (which we call items) should be packaged entirely in one large piece (which we call a plate), obeying non-overlapping constraints and minimizing the dimensions of the plate. To ensure non-overlapping, we make use of separation lines, that is, lines that separate one item from another. We present nonlinear programming models for problems of packing regular and irregular items that rotate freely. The items can be circles, convex and nonconvex polygons. The main advantage of the models is their simplicity, because they use only basic geometry concepts. We use the nonlinear programming algorithm IPOPT (an algorithm of interior points type), which is part of COIN-OR, to solve the problems. Computational tests were performed using known instances of the literature and the results were compared with results presented in the literature, obtained with other methodologies that also use free rotations, showing that our models are competitive. We also propose the use of separating parabola to avoid items overlaping in the models, which could provide greater computational eficiency as well as solutions with better quality.

Page generated in 0.1472 seconds