1 |
Emissões de gases de efeito estufa após aplicação de vinhaça in natura e processada anaerobicamente no solo / Greenhouse gases emission after in natura and anaerobic digested vinasse application in soilLucas Pecci Canisares 17 August 2016 (has links)
O processamento anaeróbio da vinhaça pode ser útil para reduzir as emissões de gases do efeito estufa após a aplicação do seu efluente, com menos C lábil, em solos. O presente trabalho mediu as emissões de gases de efeito estufa através do método de câmaras estáticas após a aplicação das duas formas de vinhaça (in natura e processada anaerobiamente ) e a interação com ureia em um LATOSSOLO VERMELHO simulando a camada 0-20 cm de um solo em uma coluna de PVC. Foi observado que a aplicação de vinhaça processada ao solo emitiu 2.592 µg C-CH4 m-2 ao final de 90 dias, mais do que os tratamentos com vinhaça processada com ureia (-590 µg C-CH4 m-2), controle (-601 g C-CH4 m-2), vinhaça in natura (-1.176 µg C-CH4m-2), vinhaça in natura com ureia (-1.533 µg C-CH4 m-2), e ureia (-2.760 µg C-CH4 m-2). A adição de vinhaça in natura estimulou a emissão de CO2 produzindo 60,2 g C-CO2 m-2 ao longo de 90 dias, valor superior aos tratamentos vinhaça processada com ureia (36,7 g C-CO2 m-2), ureia (35,1 g C-CO2m-2), controle (25,8 g C-CO2m-2) e vinhaça processada (22,1 g C-CO2 m-2). A adição de vinhaça in natura com ureia (45,0 g C-CO2 m-2) emitiu mais CO2 em relação aos tratamentos controle e vinhaça processada, além disso, a aplicação da ureia junto da vinhaça processada provocou um aumento na emissão de CO2 em relação a vinhaça processada sozinha. Os maiores fluxos de N2O foram observados no solo fertilizado com vinhaça processada com ureia (302,8 mg N-N2O m-2) e apenas ureia (199,4 mg N-N2 m-2), seguido da fertilização com vinhaça in natura com ureia (70,9 mg N- N2O m-2) superior aos tratamentos com vinhaça processada (12,14mg N-N2O m-2), controle (7,54 mg N-N2O m-2) e vinhaça in natura (6,64 mg N- N2O m-2). Com a realização das primeiras medições das emissões de gases do efeito estufa após a aplicação da vinhaça processada no solo concluiu-se que as emissões de CO2 são mitigadas, porém provoca aumento fluxo de CH4 e N2O do solo para a atmosfera em relação à vinhaça in natura. / The vinasse anaerobic digestion migh be usefull to avoid greenhouse gases emissions after apply the effluent on soil due the low labile C content. This research measured during 90 days the greenhouse gases emissions using the static chamber method after the application of two forms of vinasse (in natura and digested) and the interaction of both with urea in a soil PVC column simulating the 0-20 cm layer of a Red Latossol. The digested vinasse application in the soil produced 2,592 µg C-CH4 m-2 at the end of 90 days, more than soil with digested vinasse with urea (-590 µg C-CH4 m-2), control (-601 µg C-CH4 m-2), vinasse in natura (-1,176 µgC-CH4m-2), vinasse in natura with urea (-1,533 µg C-CH4 m-2), urea (-2,760 µg C-CH4 m-2). Vinasse in natura induced soil CO2 emission, producing 60.2 g C-CO2 m-2 at the end of 90 days, greater than digested vinasse with urea (36.7 g C-CO2 m-2), urea (35.1 g C-CO2 m-2), control (25.8 g C-CO2 m-2), and diested vinasse (22.1 g C-CO2 m-2). The interaction between vinasse in natura and urea in the soil emitted (45.0 g C-CO2 m-2) more CO2 than soil control and digested vinasse, furthermore the interaction between urea and digested vinasse resulted in a greater CO2 release to atmosphere than only digested vinasse. The greater N2O efflux was provided by digested vinasse with urea (302.8 mg N- N2O m-2) and only urea (199.4 mg N-N2O m-2) application, followed by vinasse in natura (70.9), which emitted more nitrous oxide than digested (12.14 mg N-N2O m-2), control (7.54 mg N- N2O m-2), and vinasse in natura (6.64 mg N- N2O m-2). After this first measurement of greenhouse gases efflux after soil fertilization with anaerobic digested vinasse was observed a CO2 mitigation, however the CH4 and N2O efflux from soil to atmosphere can be greater than vinasse in natura.
|
2 |
Emissões de gases de efeito estufa após aplicação de vinhaça in natura e processada anaerobicamente no solo / Greenhouse gases emission after in natura and anaerobic digested vinasse application in soilCanisares, Lucas Pecci 17 August 2016 (has links)
O processamento anaeróbio da vinhaça pode ser útil para reduzir as emissões de gases do efeito estufa após a aplicação do seu efluente, com menos C lábil, em solos. O presente trabalho mediu as emissões de gases de efeito estufa através do método de câmaras estáticas após a aplicação das duas formas de vinhaça (in natura e processada anaerobiamente ) e a interação com ureia em um LATOSSOLO VERMELHO simulando a camada 0-20 cm de um solo em uma coluna de PVC. Foi observado que a aplicação de vinhaça processada ao solo emitiu 2.592 µg C-CH4 m-2 ao final de 90 dias, mais do que os tratamentos com vinhaça processada com ureia (-590 µg C-CH4 m-2), controle (-601 g C-CH4 m-2), vinhaça in natura (-1.176 µg C-CH4m-2), vinhaça in natura com ureia (-1.533 µg C-CH4 m-2), e ureia (-2.760 µg C-CH4 m-2). A adição de vinhaça in natura estimulou a emissão de CO2 produzindo 60,2 g C-CO2 m-2 ao longo de 90 dias, valor superior aos tratamentos vinhaça processada com ureia (36,7 g C-CO2 m-2), ureia (35,1 g C-CO2m-2), controle (25,8 g C-CO2m-2) e vinhaça processada (22,1 g C-CO2 m-2). A adição de vinhaça in natura com ureia (45,0 g C-CO2 m-2) emitiu mais CO2 em relação aos tratamentos controle e vinhaça processada, além disso, a aplicação da ureia junto da vinhaça processada provocou um aumento na emissão de CO2 em relação a vinhaça processada sozinha. Os maiores fluxos de N2O foram observados no solo fertilizado com vinhaça processada com ureia (302,8 mg N-N2O m-2) e apenas ureia (199,4 mg N-N2 m-2), seguido da fertilização com vinhaça in natura com ureia (70,9 mg N- N2O m-2) superior aos tratamentos com vinhaça processada (12,14mg N-N2O m-2), controle (7,54 mg N-N2O m-2) e vinhaça in natura (6,64 mg N- N2O m-2). Com a realização das primeiras medições das emissões de gases do efeito estufa após a aplicação da vinhaça processada no solo concluiu-se que as emissões de CO2 são mitigadas, porém provoca aumento fluxo de CH4 e N2O do solo para a atmosfera em relação à vinhaça in natura. / The vinasse anaerobic digestion migh be usefull to avoid greenhouse gases emissions after apply the effluent on soil due the low labile C content. This research measured during 90 days the greenhouse gases emissions using the static chamber method after the application of two forms of vinasse (in natura and digested) and the interaction of both with urea in a soil PVC column simulating the 0-20 cm layer of a Red Latossol. The digested vinasse application in the soil produced 2,592 µg C-CH4 m-2 at the end of 90 days, more than soil with digested vinasse with urea (-590 µg C-CH4 m-2), control (-601 µg C-CH4 m-2), vinasse in natura (-1,176 µgC-CH4m-2), vinasse in natura with urea (-1,533 µg C-CH4 m-2), urea (-2,760 µg C-CH4 m-2). Vinasse in natura induced soil CO2 emission, producing 60.2 g C-CO2 m-2 at the end of 90 days, greater than digested vinasse with urea (36.7 g C-CO2 m-2), urea (35.1 g C-CO2 m-2), control (25.8 g C-CO2 m-2), and diested vinasse (22.1 g C-CO2 m-2). The interaction between vinasse in natura and urea in the soil emitted (45.0 g C-CO2 m-2) more CO2 than soil control and digested vinasse, furthermore the interaction between urea and digested vinasse resulted in a greater CO2 release to atmosphere than only digested vinasse. The greater N2O efflux was provided by digested vinasse with urea (302.8 mg N- N2O m-2) and only urea (199.4 mg N-N2O m-2) application, followed by vinasse in natura (70.9), which emitted more nitrous oxide than digested (12.14 mg N-N2O m-2), control (7.54 mg N- N2O m-2), and vinasse in natura (6.64 mg N- N2O m-2). After this first measurement of greenhouse gases efflux after soil fertilization with anaerobic digested vinasse was observed a CO2 mitigation, however the CH4 and N2O efflux from soil to atmosphere can be greater than vinasse in natura.
|
3 |
Modelagem hidro-bioquímica de reatores anaeróbios: aplicação da dinâmica de fluidos computacional e da dinâmica de sistemas / Hydro-biochemical modeling of anaerobic reactors: application of computational fluid dynamics and systems dynamicRocha, Vinícius Carvalho 26 January 2017 (has links)
Modelos matemáticos são representações ou interpretações simplificadas da realidade ou uma representação de um fragmento de um sistema. As simulações destes fenômenos auxiliam na tomada de decisão da parte interessada, ou seja, aqueles que trabalham em uma área. A modelagem de um sistema de processos anaeróbios, como o tratamento de um efluente em reatores UASB (Upflow Anaerobic Sludge Blanket), auxilia os gestores destes sistemas na operação e no controle de estabilidade. O modelo ADM1 (Anaerobic Digestion Model Nº 1), criado pela IWA em 2002, simula o comportamento da digestão anaeróbia. Entretanto, este modelo não considera a hidrodinâmica do sistema como fator relevante no desempenho do processo. O estudo do comportamento do escoamento de efluente no interior de um reator é possível através de ensaios de hidrodinâmica. Estes são conduzidos, majoritariamente, por meio de experimentos laboratoriais que se utilizam de traçadores que, por sua vez, podem resultar em custos elevados. A Dinâmica de Fluidos Computacional (DFC) é uma área na mecânica dos fluidos que utiliza análises numéricas e algoritmos para solucionar e analisar problemas relacionados com escoamento de fluidos. Os softwares de DFC que resolvem estes algoritmos podem ser utilizados na simulação dos ensaios de hidrodinâmica. Foi utilizado nesta tese o pacote de DFC Ansys®, em que o software CFXTM foi o escolhido para realizar as simulações de escoamento. Um dos objetivos desta tese foi a validação desta simulação por meio de ensaios de laboratório e ensaios virtuais em um reator UASB em escala de bancada (1,5 L). Resultou-se, dessa comparação, em dados estatisticamente similares (teste U de Mann-Whitney), proporcionando validação do método. Após esta validação, simulou-se o mesmo tipo de ensaio para um reator UASB em formato de \"Y\" (escala piloto; 119,3 L). Foram simuladas três condições operacionais, em que se variou a vazão de alimentação, sendo esta função da carga orgânica volumétrica aplicada ao lodo (COV). As COV foram 7,5, 12,5 e 17,5 kgDQO m-3d-1. Obteve-se N-CSTR (número de reatores de mistura completa em série) igual a 11, 10 e 10 unidades para cada condição, respectivamente. A ferramenta de Dinâmica de Sistemas utiliza-se de uma abordagem de entendimento de modelos complexos e, por meio de ciclos de retroalimentação (feedback) e estoques e fluxos (stocks and flows), demonstra que modelos aparentemente simples podem ser muito complexos. Existem vários softwares de Dinâmica de Sistemas e neles podem ser implementados os mais variados modelos. Utilizando o software Vensim PLE®, modelou-se a digestão anaeróbia do ácido acético por meio de equações baseadas no modelo de cinética enzimática de Monod e no modelo de digestão anaeróbia ADM1. Considerou-se as taxas de consumo de substrato e crescimento de biomassa bacteriana, a inibição causada pelo pH e a quantidade de alcalinizante necessária para atingir o pH desejado deste meio. De forma complementar, integrou-se um modelo de cálculo de alcalinidade do meio e, desta forma, foi possível determinar as concentrações de cada espécie que confere alcalinidade ao meio, considerando o equilíbrio do carbonato. Denominou-se esta modelação (DFC e dinâmica de sistemas) de Modelo Hidro-bioquímico do processamento anaeróbio. Os resultados obtidos por Del Nery et al. (2016) corroboraram com os obtidos nesta tese. / Mathematical models are representations and simplified interpretations of reality or a representation of a system fragment. The modeling of anaerobic processes, such as wastewater treatment in UASB (Upflow Anaerobic Sludge Blanket) reactors, helps managers in the operation of these systems and stability control. The Anaerobic Digestion Model No. 1 (ADM1), created by IWA in 2002, simulates the behavior of anaerobic digestion. However, this model does not consider the system hydrodynamics as a relevant factor in the performance of the process. The effluent flow behavior studies on the reactor inside is possible by hydrodynamic tests. These are conducted through laboratory experiments that uses tracers and this can result in high costs in the conduct of the tests. The Computational Fluid Dynamics (CFD) is an area in fluid mechanics that uses numerical analysis and algorithms to solve and analyze problems related to fluid flow. CFD software can be used to simulate the hydrodynamics assays. It was used in this thesis Ansys® workbench, wherein the CFXTM software was chosen to perform CFD flow simulations. One objective of this thesis was to validate the CFD simulation through laboratory and virtual testing in a UASB bench scale (1.5 liters). In this comparison, it resulted in similar data statistically (Mann-Whitney U test). After validation of the hydrodynamic test, was simulated the same type of assay for an UASB reactor \"Y\" shaped (pilot scale; = 82.27 liters working volume). The test result was N-CSTR (number of complete mixing reactors in series) equal to 4 units, considering a 103.9 liters per day of feed flow (hydraulic retention time of 19 hours). The system dynamics tool makes use of understanding approach of complex models and, through feedback loops and stocks and flows, shows that seemingly simple models can be very complex. There are several system dynamics software and most varied models can be implemented. Using Vensim PLE® software, it was developed an acetate anaerobic digestion model (in this case acetic acid) via equations based on the Monod and ADM1 model. It was considered for the hydro-biochemical modeling, substrate consumption and growth of bacterial biomass rates, the pH inhibition and the amount of alkalizing necessary to achieve the desired pH of the medium. Complementarily, integrated into a calculation alkalinity model of the medium and thus it was possible to determine the concentrations of each species imparts environment alkalinity, considering the carbonate balance.
|
4 |
Modelagem hidro-bioquímica de reatores anaeróbios: aplicação da dinâmica de fluidos computacional e da dinâmica de sistemas / Hydro-biochemical modeling of anaerobic reactors: application of computational fluid dynamics and systems dynamicVinícius Carvalho Rocha 26 January 2017 (has links)
Modelos matemáticos são representações ou interpretações simplificadas da realidade ou uma representação de um fragmento de um sistema. As simulações destes fenômenos auxiliam na tomada de decisão da parte interessada, ou seja, aqueles que trabalham em uma área. A modelagem de um sistema de processos anaeróbios, como o tratamento de um efluente em reatores UASB (Upflow Anaerobic Sludge Blanket), auxilia os gestores destes sistemas na operação e no controle de estabilidade. O modelo ADM1 (Anaerobic Digestion Model Nº 1), criado pela IWA em 2002, simula o comportamento da digestão anaeróbia. Entretanto, este modelo não considera a hidrodinâmica do sistema como fator relevante no desempenho do processo. O estudo do comportamento do escoamento de efluente no interior de um reator é possível através de ensaios de hidrodinâmica. Estes são conduzidos, majoritariamente, por meio de experimentos laboratoriais que se utilizam de traçadores que, por sua vez, podem resultar em custos elevados. A Dinâmica de Fluidos Computacional (DFC) é uma área na mecânica dos fluidos que utiliza análises numéricas e algoritmos para solucionar e analisar problemas relacionados com escoamento de fluidos. Os softwares de DFC que resolvem estes algoritmos podem ser utilizados na simulação dos ensaios de hidrodinâmica. Foi utilizado nesta tese o pacote de DFC Ansys®, em que o software CFXTM foi o escolhido para realizar as simulações de escoamento. Um dos objetivos desta tese foi a validação desta simulação por meio de ensaios de laboratório e ensaios virtuais em um reator UASB em escala de bancada (1,5 L). Resultou-se, dessa comparação, em dados estatisticamente similares (teste U de Mann-Whitney), proporcionando validação do método. Após esta validação, simulou-se o mesmo tipo de ensaio para um reator UASB em formato de \"Y\" (escala piloto; 119,3 L). Foram simuladas três condições operacionais, em que se variou a vazão de alimentação, sendo esta função da carga orgânica volumétrica aplicada ao lodo (COV). As COV foram 7,5, 12,5 e 17,5 kgDQO m-3d-1. Obteve-se N-CSTR (número de reatores de mistura completa em série) igual a 11, 10 e 10 unidades para cada condição, respectivamente. A ferramenta de Dinâmica de Sistemas utiliza-se de uma abordagem de entendimento de modelos complexos e, por meio de ciclos de retroalimentação (feedback) e estoques e fluxos (stocks and flows), demonstra que modelos aparentemente simples podem ser muito complexos. Existem vários softwares de Dinâmica de Sistemas e neles podem ser implementados os mais variados modelos. Utilizando o software Vensim PLE®, modelou-se a digestão anaeróbia do ácido acético por meio de equações baseadas no modelo de cinética enzimática de Monod e no modelo de digestão anaeróbia ADM1. Considerou-se as taxas de consumo de substrato e crescimento de biomassa bacteriana, a inibição causada pelo pH e a quantidade de alcalinizante necessária para atingir o pH desejado deste meio. De forma complementar, integrou-se um modelo de cálculo de alcalinidade do meio e, desta forma, foi possível determinar as concentrações de cada espécie que confere alcalinidade ao meio, considerando o equilíbrio do carbonato. Denominou-se esta modelação (DFC e dinâmica de sistemas) de Modelo Hidro-bioquímico do processamento anaeróbio. Os resultados obtidos por Del Nery et al. (2016) corroboraram com os obtidos nesta tese. / Mathematical models are representations and simplified interpretations of reality or a representation of a system fragment. The modeling of anaerobic processes, such as wastewater treatment in UASB (Upflow Anaerobic Sludge Blanket) reactors, helps managers in the operation of these systems and stability control. The Anaerobic Digestion Model No. 1 (ADM1), created by IWA in 2002, simulates the behavior of anaerobic digestion. However, this model does not consider the system hydrodynamics as a relevant factor in the performance of the process. The effluent flow behavior studies on the reactor inside is possible by hydrodynamic tests. These are conducted through laboratory experiments that uses tracers and this can result in high costs in the conduct of the tests. The Computational Fluid Dynamics (CFD) is an area in fluid mechanics that uses numerical analysis and algorithms to solve and analyze problems related to fluid flow. CFD software can be used to simulate the hydrodynamics assays. It was used in this thesis Ansys® workbench, wherein the CFXTM software was chosen to perform CFD flow simulations. One objective of this thesis was to validate the CFD simulation through laboratory and virtual testing in a UASB bench scale (1.5 liters). In this comparison, it resulted in similar data statistically (Mann-Whitney U test). After validation of the hydrodynamic test, was simulated the same type of assay for an UASB reactor \"Y\" shaped (pilot scale; = 82.27 liters working volume). The test result was N-CSTR (number of complete mixing reactors in series) equal to 4 units, considering a 103.9 liters per day of feed flow (hydraulic retention time of 19 hours). The system dynamics tool makes use of understanding approach of complex models and, through feedback loops and stocks and flows, shows that seemingly simple models can be very complex. There are several system dynamics software and most varied models can be implemented. Using Vensim PLE® software, it was developed an acetate anaerobic digestion model (in this case acetic acid) via equations based on the Monod and ADM1 model. It was considered for the hydro-biochemical modeling, substrate consumption and growth of bacterial biomass rates, the pH inhibition and the amount of alkalizing necessary to achieve the desired pH of the medium. Complementarily, integrated into a calculation alkalinity model of the medium and thus it was possible to determine the concentrations of each species imparts environment alkalinity, considering the carbonate balance.
|
Page generated in 0.0724 seconds