Spelling suggestions: "subject:"progenitor"" "subject:"progenitors""
1 |
Využití Toll-like receptoru 2 při definování embryonálních definitivních hematopoetických progenitorů / The utility of Toll-like receptor 2 in defining the progenitors of definitive embryonic hematopoiesisŠplíchalová, Iva January 2020 (has links)
Hematopoiesis is a vital process in which red blood cells and cells of the immune system are formed. It is initiated during early embryonic development when we find hematopoietic progenitors in separate anatomical sites. Embryonic hematopoiesis comprises three successive and partly overlapping waves of progenitors with a different hematopoietic potential. The primary anatomical place where hematopoiesis takes place shortly before the birth is the bone marrow (BM). Since at this time point of development BM is already populated by hematopoietic stem cell (HSCs) progenitors, it becomes also the site of hematopoiesis in adulthood. However, the bone marrow is not the only place where hematopoietic progenitors emerge and develop. The Yolk sac (YS) and the Aorta-Gonad-Mesonephros (AGM) region are the initial sites of the appearance of the three waves of progenitors in the early embryogenesis. These progenitors and their descendants play an indispensable role during the development of an individual. Because there are no specific markers that would unambiguously characterize progenitors of these individual waves, their physical separation and hence also functional characterization is still incomplete. Recent studies have shown that Toll-like receptors (TLRs) are expressed on adult HSCs. The stimulation of...
|
2 |
Role chromation remoledačné ATPázy SMARCA5 v krvetvorbě vývoji červených krvinek / Role of Smarca5 (Snf2h) chromation remodeling ATPase in hematopoitic development and erythropoiesisKokavec, Juraj January 2017 (has links)
The Imitation Switch (ISWI) nuclear ATPase Smarca5 (Snf2h) is one of the most conserved chromatin remodeling factors. It exists in a variety of oligosubunit complexes that move DNA with respect to the histone octamer to generate regularly spaced nucleosomal arrays. Smarca5 interacts with different accessory proteins and represents a molecular motor for DNA replication, repair and transcription. We deleted Smarca5 at the onset of definitive hematopoiesis (Vav1-iCre) and observed that animals die during late fetal development due to anemia. Hematopoietic stem and progenitor cells (HSPCs) accumulated but their maturation towards erythroid and myeloid lineages was inhibited. Proerythroblasts were dysplastic while basophilic erythroblasts were blocked in G2/M and depleted. Smarca5 deficiency led to increased p53 levels, its activation at two residues, one associated with DNA damage (S-18) second with CBP/p300 (K376Ac), and finally activation of the p53 targets. We also deleted Smarca5 in committed erythroid cells (Epor-iCre) and observed that animals were anemic postnatally. Furthermore, 4- OHT-mediated deletion of Smarca5 in the ex vivo cultures confirmed its requirement for erythroid cell proliferation. Thus, Smarca5 plays indispensable roles during early hematopoiesis and erythropoiesis.
|
3 |
Fylogeneze krvetvorby obratlovců / Origins of vertebrate hematiopoiesisSvoboda, Ondřej January 2015 (has links)
(ENGLISH) Hematopoiesis is dependent on the actions of hematopoietic stem cells (HSCs). This process is tightly controlled through a complex array of extrinsic and intrinsic factors. Even though the hematopoiesis seems to be well conserved across the disparate vertebrate animals, erythroid and thrombocytic differentiation have changed during the evolution of mammals. Specifically, adult mammalian red blood cells have the unique feature of being enucleated, and mammalian thrombocytes are not individual cells, but fragments of megakaryocytes, instead. It is likely that these enhancements provided a survival advantage to early mammalian species; however, they also bring up the question of evolutionary origin of these cells that studied using zebrafish (Danio rerio) model. First, it was necessary to generate a toolbox of a recombinant cytokines and optimized culture media that allowed us to manipulate zebrafish hematopoietic cells ex vivo in liquid and clonal cultures. Interestingly, teleost species underwent an extra duplication event during their evolution and as a result, two copies (paralogs) of some of the genes are present in zebrafish. This was also the case for majority of the cytokines from our toolbox and here, we provide functional characterization of these paralogs. Strikingly, our results...
|
Page generated in 0.0356 seconds