Spelling suggestions: "subject:"projektivní""
11 |
Families of curves with prescribed singularitiesKeilen, Thomas. Unknown Date (has links) (PDF)
University, Diss., 2001--Kaiserslautern.
|
12 |
Flecnodal and LIE-curves of ruled surfaces / Fleknodal- und LIE-Kurven von RegelflächenKhattab, Ashraf 09 November 2005 (has links) (PDF)
If we consider ruled surfaces of the projective 3-space as a one parameter family of lines, then they appear in the well-known KLEIN-model of lines in the projective 3-space as curves of a hyperquadric in the projective 5-space. The osculating spaces of such a curve are represented in the projective 3-space by spaces of linear complexes. Those points of a generator e of the ruled surface, in which the tangent bundles are in the same time complex line bundles in the accompanying osculating line complex of the ruled surface along e, are called the LIE-points of e. The LIE-points fulfil two (real or imaginary conjugate) curves on the ruled surface called the LIE-curves. The support of the osculating-3-space of the ruled surface along a regular non-torsal generator e are two, one or zero straight lines in the osculating regulus. If thes straight lines exist, one calls them the flecnode tangents of the ruled surface. On a hyperbolic ruled surface build the points of contact of the flecnode tangents two projective distinguished curves called the flecnode curves. In this work we present the different methods of treating these curves in the history, and we give a new explicit calculation of the flecnode points and the LIE-points depending on the basis of a PLÜCKER-coordinates representation of the ruled surface. In addition we study the questions that appears by considering the LIE-curves of a ruled surface to form a pair of BERTRAND curves for which this ruled surface is the surface of common main normals. For example, the question about ruled surfaces, whose LIE-curves are orthogonal to the generators will be answered here. / Regelflächen des projektiven 3-Raums erscheinen, als (eindimensionalen) Geradenmengen aufgefasst, im bekannten KLEINschen Punktmodell der Geradenmenge vom projektiven 3-Raum als Kurven einer Hyperquadrik in einem projektiven 5-Raum. Die Schmiegräume einer solchen Kurve werden im projektiven 3-Raum durch Räume linearer Komplexe repräsentiert. Diejenigen Punkte einer Erzeugende e der Regelfläche, in denen die Tangentenbüschel gleichzeitig auch Komplexgeradenbüschel im begleitenden Schmiegkomplex von e sind, heißen LIE-Punkte von e. Die LIE-Punkte erfüllen zwei (reelle oder konjugiert imaginäre) Kurvenzüge auf der Regelfläche, die LIE-Kurven. Die Träger des Schmieg-3-Raums der Regelfläche längs einer reguläre nichttorsalen Erzeugende e sind zwei, eine oder null Geraden im Schmiegregulus. Sofern diese Geraden existieren, nennt man sie die Fleknodaltangenten der Regelfläche. Auf hyperbolischen Regelflächen bilden die Berührpunkte der Fleknodaltangenten zwei projektiv ausgezeichnete Kurven, die Fleknodalkurven. In der vorliegenden Arbeit stellen wir die unterschiedlichen Behandelungen diesen ausgezeichneten Kurven in der Geschichte dar, und geben wir eine neue explizite Berechnung von den Fleknodal- bzw. LIE-Punkte auf der Basis einer PLÜCKER-Koordinaten-Darstellung der Regelfläche. Außerdem untersuchen wir die Fragestellungen, die man bekommt, wenn man versucht, dass das paarweise auftreten der LIE-Kurven irgendwie in Analogie zum klassischen euklidischen BERTRAND-Kurvenpaar zu stellen. Z.B. lässt sich die Frage nach Regelflächen, deren LIE-Kurven Orthogonaltrajektorien der Erzeugenden sind, hier beantwortet.
|
13 |
Flecnodal and LIE-curves of ruled surfacesKhattab, Ashraf 25 November 2005 (has links)
If we consider ruled surfaces of the projective 3-space as a one parameter family of lines, then they appear in the well-known KLEIN-model of lines in the projective 3-space as curves of a hyperquadric in the projective 5-space. The osculating spaces of such a curve are represented in the projective 3-space by spaces of linear complexes. Those points of a generator e of the ruled surface, in which the tangent bundles are in the same time complex line bundles in the accompanying osculating line complex of the ruled surface along e, are called the LIE-points of e. The LIE-points fulfil two (real or imaginary conjugate) curves on the ruled surface called the LIE-curves. The support of the osculating-3-space of the ruled surface along a regular non-torsal generator e are two, one or zero straight lines in the osculating regulus. If thes straight lines exist, one calls them the flecnode tangents of the ruled surface. On a hyperbolic ruled surface build the points of contact of the flecnode tangents two projective distinguished curves called the flecnode curves. In this work we present the different methods of treating these curves in the history, and we give a new explicit calculation of the flecnode points and the LIE-points depending on the basis of a PLÜCKER-coordinates representation of the ruled surface. In addition we study the questions that appears by considering the LIE-curves of a ruled surface to form a pair of BERTRAND curves for which this ruled surface is the surface of common main normals. For example, the question about ruled surfaces, whose LIE-curves are orthogonal to the generators will be answered here. / Regelflächen des projektiven 3-Raums erscheinen, als (eindimensionalen) Geradenmengen aufgefasst, im bekannten KLEINschen Punktmodell der Geradenmenge vom projektiven 3-Raum als Kurven einer Hyperquadrik in einem projektiven 5-Raum. Die Schmiegräume einer solchen Kurve werden im projektiven 3-Raum durch Räume linearer Komplexe repräsentiert. Diejenigen Punkte einer Erzeugende e der Regelfläche, in denen die Tangentenbüschel gleichzeitig auch Komplexgeradenbüschel im begleitenden Schmiegkomplex von e sind, heißen LIE-Punkte von e. Die LIE-Punkte erfüllen zwei (reelle oder konjugiert imaginäre) Kurvenzüge auf der Regelfläche, die LIE-Kurven. Die Träger des Schmieg-3-Raums der Regelfläche längs einer reguläre nichttorsalen Erzeugende e sind zwei, eine oder null Geraden im Schmiegregulus. Sofern diese Geraden existieren, nennt man sie die Fleknodaltangenten der Regelfläche. Auf hyperbolischen Regelflächen bilden die Berührpunkte der Fleknodaltangenten zwei projektiv ausgezeichnete Kurven, die Fleknodalkurven. In der vorliegenden Arbeit stellen wir die unterschiedlichen Behandelungen diesen ausgezeichneten Kurven in der Geschichte dar, und geben wir eine neue explizite Berechnung von den Fleknodal- bzw. LIE-Punkte auf der Basis einer PLÜCKER-Koordinaten-Darstellung der Regelfläche. Außerdem untersuchen wir die Fragestellungen, die man bekommt, wenn man versucht, dass das paarweise auftreten der LIE-Kurven irgendwie in Analogie zum klassischen euklidischen BERTRAND-Kurvenpaar zu stellen. Z.B. lässt sich die Frage nach Regelflächen, deren LIE-Kurven Orthogonaltrajektorien der Erzeugenden sind, hier beantwortet.
|
14 |
Centralisers of fundamental subgroupsAltmann, Kristina. Unknown Date (has links) (PDF)
Darmstadt, Techn. University, Diss., 2007.
|
15 |
Exzeptionelle Vektorbündel und Reflektionen an Kippgarben über projektiven gewichteten Kurven /Hübner, Thomas. January 1996 (has links)
Universiẗat-Gesamthochsch., Diss.--Paderborn, 1996.
|
16 |
Sketched stable planesWich, Anke. January 2003 (has links)
Stuttgart, Univ., Diss., 2003.
|
17 |
Families of hypersurfaces with many prescribed singularitiesWestenberger, Eric. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Kaiserslautern.
|
18 |
Sketched stable planesWich, Anke. Unknown Date (has links) (PDF)
University, Diss., 2003--Stuttgart.
|
19 |
Geometry and Arithmetic of the LLSvS VarietyGiovenzana, Franco 01 April 2021 (has links)
This thesis concerns the hyperkähler eightfold constructed by Lehn, Lehn, Sorgen, and van Straten, built from twisted cubics on a cubic fourfold. We study its period, its birational properties and we describe some geometric features.
|
20 |
Singularities of the Perfect Cone CompactificationGiovenzana, Luca 04 March 2021 (has links)
This thesis analyses the singularities of toroidal compactifications. Motivated by a result of Shepherd-Barron about the first Voronoi compactification of the moduli space of principally polarised abelian varieties, the object taken into consideration consists of the perfect cone (also known as first Voroni) compactification of arithmetic quotients of type IV domains. These are of importance in the context of algebraic geometry because they are used to construct moduli spaces of polarised K3 surfaces and are strongly related to moduli spaces of hyperkähler varieties of higher dimension. The local analysis of singularities of a toroidal compactification reduces to that of finite quotients of toric varieties. The main result of this thesis gives a description of the singularities of the perfect cone compactification of the moduli space of pseudo-polarised K3 surfaces of square-free degree.
|
Page generated in 0.0553 seconds