881 |
Prostasome Modulation of Blood Cascade System and Phosphoprotein Reactions with Focus on Prostate CancerBabiker, Adil Abdelgadir January 2005 (has links)
<p>Prostasomes are extracellularly occurring submicron, membrane-surrounded organelles produced by the epithelial cells of the prostate and present in semen. Their precise physiological role is not known, although some of their properties assign them to important physiological and patho-physiological functions. In this thesis, some new properties of seminal and malignant cell line (DU145, PC-3 and LNCaP) prostasomes have been identified. </p><p>Differences in the expressions and activities of prostasomal CD59, ATPase, protein kinases and tissue factor (TF) have been characterized. The transfer of prostasomal CD59 to CD59-deficient erythrocytes (rabbit and human PNH erythrocytes) has been established. CD59, protein kinases and TF were overexpressed by malignant cell prostasomes. ATPase activity was highest on seminal prostasomes with minimal expression by malignant cell prostasomes resulting in more residual ATP available for phosphorylation reactions. Several proteins were phosphorylated by prostasomal protein kinases, <i>viz.</i> complement component C3, fibrinogen, vitronectin and E-cadherin. Furthermore, TF was identified as the main endogenous phosphorylation substrate on prostasomes. In addition, prothrombotic effects of prostasomes were established. DU145 and PC-3-derived prostasomes exerted a higher clotting effect on whole blood and plasma compared to LNCaP and seminal prostasomes.</p><p>In conclusion, malignant cell prostasomes showed higher ability to interact with the biological system in favor of prostate cancer cell promotion and survival. The roles played by prostasomes in this context may improve the understanding of the mechanisms that help the prostate cancer cells to avoid the complement attack (CD59 transfer and phosphorylation of C3), to promote angiogenesis (TF) and to metastasize. It may also provide a better understanding of some of the complications usually seen in some terminal prostate cancer patients like thrombotic events and tendency to develop disseminated intravascular coagulation.</p>
|
882 |
2-ME-Induced Apoptotic Signalling in Prostate Cancer PC3 CellsDavoodpour, Padideh January 2005 (has links)
<p>Prostate cancer is common in the Western society and current treatments are often associated with side effects, therefore improved therapeutic strategies are desired. 2-methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17β inhibits tumor growth <i>in vivo</i> as it prevents angiogenesis. 2-ME has also direct cytotoxic effects on tumor cells. In this study, we have investigated the potential use of PET to record effects 2-ME on prostate cancer cell (PC3) aggregates. The anti-proliferative and pro-apoptotic effects of 2-ME on PC3 cell aggregates <i>in vitro</i> were correlated with the uptake of deoxy-D-glucose, FMAU and choline labeled with <sup>18</sup>F, <sup>11</sup>C or <sup>3</sup>H. 2-ME clearly reduced growth of PC3 aggregates and induced apoptosis in a dose-dependent manner. However, the PET tracers failed to record the cytotoxicity of 2-ME on PC3 aggregates. </p><p>Further, the signaling events responsible for 2-ME induced prostate cancer cell death were investigated. We found that Smad7, previously implicated in TGF-β-induced responses, is required for 2-ME-induced p38 MAPK activation and subsequent apoptosis in PC-3U cells, as shown by the use of antisense or siRNA techniques and a specific inhibitor of p38 MAPK (SB203580). Interestingly, Smad7 also regulated the expression of the pro-apoptotic Bim protein. </p><p>Shb is a Src Homology 2 domain adapter protein with pro-apoptotic effects. PC3 clones overexpressing Shb exhibited increased rates of apoptosis, both in the presence or absence of 2-ME, as they failed to activate survival mechanisms through ERK and Akt in response to 2-ME. Notably, Shb cells displayed increased activity of the pro-apoptotic kinase c-Abl. Pre-treatment with SB203580 or c-Abl (STI-571) inhibitors completely blocked the apoptotic response to 2-ME. </p><p>In conclusion, Smad7 and Shb appear to be crucial for 2-ME-induced PC3 cell apoptosis via their activation of p38 MAPK and c-Abl. Future therapies exploring these pathways can be envisaged as treatment of prostate cancer.</p>
|
883 |
Adenovirus-mediated CD40 Ligand Immunotherapy of Prostate and Bladder CancerDzojic, Helena January 2007 (has links)
<p>Cancer immunotherapy aims at reversing the immunosuppressive tumor environment and enhancing anti-tumor immunity. This thesis comprises studies on murine models for prostate (TRAMP-C2) and bladder (MB49) cancer with the aim to explore if the introduction of an adenoviral vector expressing CD40 ligand (AdCD40L) can induce anti-tumor immune responses.</p><p>We show in subcutaneous mouse models that AdCD40L treatment suppresses tumor growth. Bladder cancer is known to secrete immunosuppressive IL-10 which may inhibit T cell function. We show that introducing AdCD40L into mouse bladder tumors inhibits IL-10 production and reverses immunosuppression. AdCD40L-transduced mouse prostate cancer cells showed caspase activation and reduced cell viability. Vaccination with CD40L-modified prostate cancer cells induces anti-tumor responses and protects mice against rechallenge with native TRAMP-C2 cells. In order to enhance AdCD40L therapy, we explored the possibility of combining it with the histone deacetylase inhibitor FK228, also known as depsipeptide. We show that FK228 upregulates coxsackie and adenovirus receptor expression and thereby enhances adenoviral-mediated CD40L expression in both murine and human prostate cancer cells. Increasing amounts of FK228 or AdCD40L reduces prostate cancer cell viability, while the combined treatment gives at least an additive therapeutic effect. Moreover, we show that AdCD40L transduction of prostate cancer cells induces endogenous CD40 expression and sensitize them for CD40L-mediated therapy.</p><p>In order to conduct prostate-specific gene therapy, prostate-specific promoters can be used to drive transgene expression. However, there are no reports on prostate-specific promoters that are transcriptionally active in mouse cells. Here we show that by using the two-step transcription activation system (TSTA), we can enhance the activity of a recombinant human promoter sequence and obtain activity in mouse prostate cancer cells as well. This finding paves the way for future studies of prostate-specific gene therapy in immunocompetent mouse models.</p>
|
884 |
Prostasome Modulation of Blood Cascade System and Phosphoprotein Reactions with Focus on Prostate CancerBabiker, Adil Abdelgadir January 2005 (has links)
Prostasomes are extracellularly occurring submicron, membrane-surrounded organelles produced by the epithelial cells of the prostate and present in semen. Their precise physiological role is not known, although some of their properties assign them to important physiological and patho-physiological functions. In this thesis, some new properties of seminal and malignant cell line (DU145, PC-3 and LNCaP) prostasomes have been identified. Differences in the expressions and activities of prostasomal CD59, ATPase, protein kinases and tissue factor (TF) have been characterized. The transfer of prostasomal CD59 to CD59-deficient erythrocytes (rabbit and human PNH erythrocytes) has been established. CD59, protein kinases and TF were overexpressed by malignant cell prostasomes. ATPase activity was highest on seminal prostasomes with minimal expression by malignant cell prostasomes resulting in more residual ATP available for phosphorylation reactions. Several proteins were phosphorylated by prostasomal protein kinases, viz. complement component C3, fibrinogen, vitronectin and E-cadherin. Furthermore, TF was identified as the main endogenous phosphorylation substrate on prostasomes. In addition, prothrombotic effects of prostasomes were established. DU145 and PC-3-derived prostasomes exerted a higher clotting effect on whole blood and plasma compared to LNCaP and seminal prostasomes. In conclusion, malignant cell prostasomes showed higher ability to interact with the biological system in favor of prostate cancer cell promotion and survival. The roles played by prostasomes in this context may improve the understanding of the mechanisms that help the prostate cancer cells to avoid the complement attack (CD59 transfer and phosphorylation of C3), to promote angiogenesis (TF) and to metastasize. It may also provide a better understanding of some of the complications usually seen in some terminal prostate cancer patients like thrombotic events and tendency to develop disseminated intravascular coagulation.
|
885 |
2-ME-Induced Apoptotic Signalling in Prostate Cancer PC3 CellsDavoodpour, Padideh January 2005 (has links)
Prostate cancer is common in the Western society and current treatments are often associated with side effects, therefore improved therapeutic strategies are desired. 2-methoxyestradiol (2-ME), an endogenous metabolite of estradiol-17β inhibits tumor growth in vivo as it prevents angiogenesis. 2-ME has also direct cytotoxic effects on tumor cells. In this study, we have investigated the potential use of PET to record effects 2-ME on prostate cancer cell (PC3) aggregates. The anti-proliferative and pro-apoptotic effects of 2-ME on PC3 cell aggregates in vitro were correlated with the uptake of deoxy-D-glucose, FMAU and choline labeled with 18F, 11C or 3H. 2-ME clearly reduced growth of PC3 aggregates and induced apoptosis in a dose-dependent manner. However, the PET tracers failed to record the cytotoxicity of 2-ME on PC3 aggregates. Further, the signaling events responsible for 2-ME induced prostate cancer cell death were investigated. We found that Smad7, previously implicated in TGF-β-induced responses, is required for 2-ME-induced p38 MAPK activation and subsequent apoptosis in PC-3U cells, as shown by the use of antisense or siRNA techniques and a specific inhibitor of p38 MAPK (SB203580). Interestingly, Smad7 also regulated the expression of the pro-apoptotic Bim protein. Shb is a Src Homology 2 domain adapter protein with pro-apoptotic effects. PC3 clones overexpressing Shb exhibited increased rates of apoptosis, both in the presence or absence of 2-ME, as they failed to activate survival mechanisms through ERK and Akt in response to 2-ME. Notably, Shb cells displayed increased activity of the pro-apoptotic kinase c-Abl. Pre-treatment with SB203580 or c-Abl (STI-571) inhibitors completely blocked the apoptotic response to 2-ME. In conclusion, Smad7 and Shb appear to be crucial for 2-ME-induced PC3 cell apoptosis via their activation of p38 MAPK and c-Abl. Future therapies exploring these pathways can be envisaged as treatment of prostate cancer.
|
886 |
Adenovirus-mediated CD40 Ligand Immunotherapy of Prostate and Bladder CancerDzojic, Helena January 2007 (has links)
Cancer immunotherapy aims at reversing the immunosuppressive tumor environment and enhancing anti-tumor immunity. This thesis comprises studies on murine models for prostate (TRAMP-C2) and bladder (MB49) cancer with the aim to explore if the introduction of an adenoviral vector expressing CD40 ligand (AdCD40L) can induce anti-tumor immune responses. We show in subcutaneous mouse models that AdCD40L treatment suppresses tumor growth. Bladder cancer is known to secrete immunosuppressive IL-10 which may inhibit T cell function. We show that introducing AdCD40L into mouse bladder tumors inhibits IL-10 production and reverses immunosuppression. AdCD40L-transduced mouse prostate cancer cells showed caspase activation and reduced cell viability. Vaccination with CD40L-modified prostate cancer cells induces anti-tumor responses and protects mice against rechallenge with native TRAMP-C2 cells. In order to enhance AdCD40L therapy, we explored the possibility of combining it with the histone deacetylase inhibitor FK228, also known as depsipeptide. We show that FK228 upregulates coxsackie and adenovirus receptor expression and thereby enhances adenoviral-mediated CD40L expression in both murine and human prostate cancer cells. Increasing amounts of FK228 or AdCD40L reduces prostate cancer cell viability, while the combined treatment gives at least an additive therapeutic effect. Moreover, we show that AdCD40L transduction of prostate cancer cells induces endogenous CD40 expression and sensitize them for CD40L-mediated therapy. In order to conduct prostate-specific gene therapy, prostate-specific promoters can be used to drive transgene expression. However, there are no reports on prostate-specific promoters that are transcriptionally active in mouse cells. Here we show that by using the two-step transcription activation system (TSTA), we can enhance the activity of a recombinant human promoter sequence and obtain activity in mouse prostate cancer cells as well. This finding paves the way for future studies of prostate-specific gene therapy in immunocompetent mouse models.
|
887 |
Early effects of castration therapy in non-malignant and malignant prostate tissueOhlson, Nina January 2005 (has links)
Early Effects of Castration Therapy in Non-malignant and Malignant Prostate Tissue BACKGROUND. Androgen ablation, the standard treatment for advanced prostate cancer, results in increased apoptosis, decreased cell proliferation and subsequent involution of the prostate gland. The mechanisms behind these responses are largely unknown, but effects in the prostatic epithelium are believed to be mediated by primary changes in the stroma. The purpose of this thesis was to investigate short-term cellular effects of castration-induced prostate tissue involution in mice and humans. METHODS. Prostate tissue factors affected by castration were investigated using cDNA-arrays, micro-dissection, RT-PCR, immunohistochemistry and Western blot analysis. The effects of local insulin-like growth factor-1 (IGF-1) administration were investigated in intact and castrated mice. Non-malignant and malignant epithelial and stromal cells were micro-dissected from human prostate biopsies taken before and within two weeks after castration treatment from patients with advanced prostate cancer. These tissue compartments were analyzed by RT-PCR and/or immunohistochemistry for IGF-1, IGF-1 receptor, androgen receptor (AR) and prostate specific antigen (PSA) expression. Treatment-induced changes in these factors were related to apoptosis and proliferation as well as to clinical data and cancer specific survival. RESULTS. Similar to our observations in mouse ventral prostate (VP), non-malignant and malignant human prostate tissues responded with increased epithelial cell apoptosis and decreased proliferation after androgen withdrawal. Also, the PSA mRNA levels were reduced within the first days after therapy both in non-malignant and malignant human prostate epithelial cells. However, neither of these changes was related to subsequent nadir serum PSA or to survival. Locally injected IGF-1 increased epithelial cell proliferation and vascular volume in intact but not in castrated mice. IGF-1 was found to be mostly, but not exclusively, expressed in the stroma, and it decreased rapidly after castration in both humans and mice. This decrease was, however, largely absent in prostate tumor stroma, and tumor stroma cells showed lower pre-treatment levels of AR than stroma surrounding normal epithelial glands. Furthermore, decreased levels of IGF-1 mRNA in the non-malignant and tumor stroma cells, and in tumor epithelial cells in response to castration, were associated with high levels of apoptosis in epithelial cells after therapy. CONCLUSIONS. In the prostate, IGF-1 may be an important mediator of stroma-epithelial cell interaction that is involved in castration-induced epithelial and vascular involution. Moreover, reduced AR in the tumor stroma may play an important role in prostate cancer progression towards androgen-independency, resulting in inadequate IGF-1 reduction and apoptosis induction in response to castration. Most primary tumors initially respond to castration with markedly decreased PSA synthesis and cell proliferation, and moderately increased apoptosis. Death due to metastatic disease is, however, still common, despite primary tumor regression. This may suggest that tumor cells in metastases respond differently to treatment than primary tumor cells, probably influenced by a different and possibly androgen-independent stroma. Further studies should test the hypothesis that the effect of castration therapy can be enhanced by simultaneous blocking of IGF-1 signaling.
|
888 |
Targeting the prostate tumor microenvironment and vasculature : the role of castration, tumor-associated macrophages and pigment epithelium-derived factor / Mikromiljö och angiogenes i prostatacancer : effekter av kastration, tumör associerade makrofager och Pigment epithelium-derived factorHalin, Sofia January 2009 (has links)
BACKGROUND: Prostate cancer is the most common cancer among Swedish men. For patients with metastatic prostate cancer the standard therapy is castration, a treatment that initially provides symptomatic relief but unfortunately is not curative. New therapeutic targets for advanced prostate cancer are therefore needed. Prostate cancers are composed of tumor epithelial cells as well as many non-epithelial cells such as cancer associated fibroblasts, blood vessels and inflammatory cells. Many components of the tumor microenvironment such as tumor associated macrophages and angiogenesis have been shown to stimulate tumor progression. This thesis aims to explore mechanisms by which the local environment influences prostate tumor growth and how such mechanisms could be targeted for treatment. MATERIALS AND METHODS: We have used animal models of prostate cancer, in vitro cell culture systems and clinical materials from untreated prostate cancer patients with long follow up. Experiments were evaluated with stereological techniques, immunohistochemistry, western blotting, quantitative real-time PCR, PCR arrays and laser micro dissection. RESULTS: We found that the presence of a tumor induces adaptive changes in the surrounding non-malignant prostate tissue, and that androgen receptor negative prostate tumor cells respond to castration treatment with temporarily reduced growth when surrounded by normal castration-responsive prostate tissue. Further, we show that macrophages are important for prostate tumor growth and angiogenesis in the tumor and in the surrounding non-malignant tissue. In addition, the angiogenesis inhibitor Pigment epithelium-derived factor (PEDF) was found to be down-regulated in metastatic rat and human prostate tumors. Over-expression of PEDF inhibited experimental prostate tumor growth, angiogenesis and metastatic growth and stimulated macrophage tumor infiltration and lymphangiogenesis. PEDF was found to be down-regulated by the prostate microenvironment and tumor necrosis factor (TNF) α. CONCLUSIONS: Our studies indicate that not only the nearby tumor microenvironment but also the surrounding non-malignant prostate tissue are important for prostate tumor growth. Both the tumor and the surrounding non-malignant prostate were characterized by increased angiogenesis and inflammatory cell infiltration. Targeting the surrounding prostate tissue with castration, targeting tumor associated macrophages, or targeting the vasculature directly using inhibitors like PEDF were all shown to repress prostate tumor growth and could prove beneficial for patients with advanced prostate cancer.
|
889 |
1,25(OH)2D3 Initially Reduces TGFβ Activity in PC-3 Prostate Cancer CellsStahel, Anette January 2008 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this mainly through a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. Another major way in which 1,25(OH)2D3 inhibits cell growth in prostate cancer is via membrane-initiated steroid signalling, which triggers activation of signal cascades upon steroid binding to a receptor complex, leading to induction of genes regulating cell growth, proliferation and apoptosis. The main prostate cancer inhibiting membrane-initiated route is the TGFβ signalling pathway, elicited by the protein TGFβ. In this experiment the activating effects of 1,25(OH)2D3 on TGFβ in prostate cancer cells, as well as two other important proteins downstream in this cascade, Smad2 and 3, were investigated. PC-3 cells were incubated for 3, 5, 10, 30 and 60 minutes as well as 38 hours both together with 1,25(OH)2D3 of the concentrations 10-10 and 10-7 M and without. As the downstream cascade protein JNK is a known activator of Smad2/3, this procedure was also repeated with a JNK inhibitor. An ELISA assay scanning for activated TGFβ was then performed on supernatants from the cells treated without JNK inhibitor. In addition, a Western Blot scanning for activated Smad2 and 3 was performed on supernatants from all groups of treatment. The analysis of the result values showed that 10-10 M 1,25(OH)2D3 significantly lowered the content of active TGFβ in PC-3 cells within 3 and 5 minutes. Unfortunately the Western Blot was unsuccessful and needs therefore be repeated.
|
890 |
24,25(OH)2D3 and Regulation of Catalase Activity in LNCaP Prostate CancerStahel, Anette January 2007 (has links)
The vitamin D metabolite 1,25(OH)2D3 has long been known to inhibit growth of prostate cancer cells and this has been attributed to a VDR-mediated pathway controlling target gene expression, resulting in cell cycle arrest, apoptosis and differentiation. New research has shown that another vitamin D metabolite, 24,25(OH)2D3, inhibits proliferation of prostate cancer cells as well, more specifically, cells of the line LNCaP. It is not clear exactly how 24,25(OH)2D3 exerts this cancer growth inhibition but it has been shown that it is to some extent regulated via G protein coupled signalling pathways. Catalase is a haem-containing redox enzyme found in the majority of animal cells, plant cells and aerobic microorganisms. This enzyme is very important because it prevents excessive accumulation of the strongly oxidizing agent H2O2 which otherwise can do damage to the cells. Because of this preventive effect of catalase, important cellular processes which generate H2O2 as by-product can proceed safely. Biochemical analysis of catalase has shown that it binds endogenously to 24,25(OH)2D3. The fact that 24,25(OH)2D3 has anti-proliferative effects on prostate cancer cells combined with the fact that it binds to catalase generates the hypothesis that this binding interferes with the essential task of catalase to keep the cell free from accumulation of destructive H2O2, and by means of this interference induces apoptosis. Finding out about the cancer growth inhibiting mechanism behind each vitamin D metabolite is important and may be a lead in the search for a new, better treatment of prostate cancer. The specific aim of this project was to study if and in what way 24,25(OH)2D3 affects the enzymatic activity of catalase in LNCaP cells and to do this with dose and time responses in focus. In this experiment LNCaP cells were incubated for 48 hours together with 24,25(OH)2D3 in five different concentrations, then a catalase assay was performed on the cells including fluorescence-mediated measuring of catalase activity in both treated and untreated cells. The analysis of the result values showed that regardless of dose or time, 24,25(OH)2D3 has no statistically significant effect on catalase activity in cells of the line LNCaP.
|
Page generated in 0.0957 seconds