Spelling suggestions: "subject:"proteinkinase"" "subject:"proteinkinasen""
1 |
Vliv proteinu HBx viru hepatitidy B na aktivaci MEK1/2-ERK signalizace a inhibici IFN typu I v hepatocelulární linii Huh7 / Effect of HBV protein HBx on activation of MEK1/2 signaling and inhibition of type I IFN in hepatoma cell line Huh7Berehovska, Olena January 2019 (has links)
Hepatitis B virus (HBV) infection is one of the major causes of chronic and cancerous liver disease. Elimination of HBV from chronically infected patients by recombinant interferon α (IFNα) monotherapy shows that the mechanisms of the innate immunity play an important role in suppressing viral infection. However, the mechanisms of recognition of the HBV genome and its escape from the mechanisms of natural immunity are still little known. One of the principal factors enabling the virus to escape from cellular restriction mechanisms is the HBx viral protein. HBx is a 154 amino acid pleiotropic multifunctional protein affecting transcription, signal transduction, cell cycle, protein degradation, apoptosis, and chromosomal stability in the host cell. Previous results from our laboratory have shown that activation of the MEK1/2-ERK signaling pathway in plasmacytoid dendritic cells leads to inhibition of IFNα production. The aim of my work was to determine whether HBx activates the MEK1/2-ERK pathway and thus inhibits IFN type I production also in hepatocytes. For this purpose, I monitored HBx production in the Huh7 hepatoma cell line by transfecting the bicistronic plasmid pHBx- IRES-EGFP and Western blotting. Using the same method, I monitored activation of the MEK1/2-ERK signaling pathway by ERK...
|
2 |
Vliv malých DNA virů na regulaci tvorby interferónu / Effect of small DNA viruses on regulation of interferon productionHofman, Tomáš January 2018 (has links)
Plasmacytoid dendritic cells (pDC) represent innate immune cells capable to detect viruses in their endosomal environment via Toll-like receptors (TLRs). Viral nuclear acid recognition leads to the massive production of type I interferon (IFN I) and induction of the antiviral state in uninfected cells. Crosslinking of the surface regulatory receptors, such as BDCA-2, with monoclonal antibodies or with some viruses leads to the activation of MEK1/2- ERK signaling pathway and inhibition of IFN I production in pDC. In this study, the role of MEK1/2 kinase has been highlighted. Its inhibition reversed the inhibitory effect of BDCA-2 crosslinking and its direct activation with PMA led to the inhibition of IFN-α production. Yet an unclear role of pDC in sensing of BK polyomavirus virus (BKV) responsible for kidney transplant rejection was investigated as a major topic of this thesis. Experiments with the pDC cell line Gen2.2 and HRPTEC primary cell line showed that pDCs were not able to detect BKV particles, however, exposure of activated Gen2.2 cells to BKV inoculum dramatically upregulated production of IFN-α. Most importantly, coculture of Gen2.2 cells with BKV- infected HRPTEC cells resulted in IFN-α and TNF-α production, which was prevented by Bafilomycin. These results suggest that BKV-infected...
|
3 |
Vliv malých DNA virů na funkci plasmacytoidních dendritických buněk / Effect of small DNA viruses on function of plasmacytoid dendritic cellsJanovec, Václav January 2021 (has links)
Plasmacytoid dendritic cells (pDC) are a highly specialized subset of immune cells that sense viral nucleic acids by endosomal toll-like receptors 7 and 9 (TLR7/9). Activation of TLR7/9 leads to the production of type I interferons (IFN-I). Moreover, pDC contribute to the antiviral response by presenting viral antigens to T lymphocytes and link innate and adaptive immunity. pDC need to be properly regulated in order to limit excessive production of IFN-I that is associated with autoimmune diseases. Therefore, pDC possess a battery of regulatory receptors (RR) that limit TLR7/9-mediated cytokine production. This thesis focuses on the mechanism of RR-mediated inhibition of IFN-I production in pDC and explores interactions between pDC and two enveloped viruses, that possess the ability to hijack RR in pDC: hepatitis B virus (HBV) and human immunodeficiency virus (HIV). We showed, that MEK-ERK signaling pathway plays an active role in RR-mediated inhibition of IFN-I in pDC. Our results indicate that in line with other studies of our group, pharmacological targeting of MEK1/2-ERK signaling could be a strategy to re-establish immunogenic activity of pDC. Then, we investigated whether antiretroviral therapy (ART) in a cohort of 21 treatment-naive chronic HIV-infected patients has restored the number and...
|
4 |
Vliv malých DNA virů na regulaci tvorby interferónu / Effect of small DNA viruses on regulation of interferon productionHofman, Tomáš January 2018 (has links)
Plasmacytoid dendritic cells (pDC) represent innate immune cells capable to detect viruses in their endosomal environment via Toll-like receptors (TLRs). Viral nuclear acid recognition leads to the massive production of type I interferon (IFN I) and induction of the antiviral state in uninfected cells. Crosslinking of the surface regulatory receptors, such as BDCA-2, with monoclonal antibodies or with some viruses leads to the activation of MEK1/2- ERK signaling pathway and inhibition of IFN I production in pDC. In this study, the role of MEK1/2 kinase has been highlighted. Its inhibition reversed the inhibitory effect of BDCA-2 crosslinking and its direct activation with PMA led to the inhibition of IFN-α production. Yet an unclear role of pDC in sensing of BK polyomavirus virus (BKV) responsible for kidney transplant rejection was investigated as a major topic of this thesis. Experiments with the pDC cell line Gen2.2 and HRPTEC primary cell line showed that pDCs were not able to detect BKV particles, however, exposure of activated Gen2.2 cells to BKV inoculum dramatically upregulated production of IFN-α. Most importantly, coculture of Gen2.2 cells with BKV- infected HRPTEC cells resulted in IFN-α and TNF-α production, which was prevented by Bafilomycin. These results suggest that BKV-infected...
|
Page generated in 0.5767 seconds