• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solubility and Pseudo-polymorphic Transitions of L-Serine in Water-Methanol System

Luk, Chee-wei Jennifer 14 January 2005 (has links)
The research addressed in this thesis is focused on the solubility and pseudo-polymorphic transition of L-serine in mixed water-methanol systems. Cooling re-crystallizations were carried out that varied both temperature and methanol concentration. Solubilities were measured with high-performance liquid chromatography. It is found that the solubility increased with increase in temperature and decreased drastically with methanol concentration. The effect of temperature at which there is a transition of L-serine crystals from the rod-shaped (anhydrous) form to hexagonal (monohydrate) form was confirmed and that transition temperatures decreased with methanol concentrations in a non-linear manner. The solubility data were correlated and plotted using the vant Hoff equation and the enthalpy and entropy of dissolution were determined. These values increased with increase in methanol concentration. The solid crystals were analyzed by optical microscopy and powder X-ray diffraction. The rod-shaped crystals were identified to be anhydrous L-serine, while the hexagonal crystals were L-serine monohydrate. Dehydration of the monohydrated crystals in their solid-state was examined and the onset of such phenomenon was known to start once the crystals were removed from the solutions.
2

Crystallization and Solid-State Transformation of Pseudopolymorphic Forms of Sodium Naproxen

Kim, Young-soo 19 July 2005 (has links)
Incorporation of water molecules in the crystal structure of an organic compound has strong effects on its physical and chemical properties. Therefore, the study on stability of water-incorporated pharmaceutical compounds and mechanisms of hydration and dehydration is very important for the pharmaceutical industries. The main goals of the present research project were quantitative description of the crystallization and solid-state transformations of pseudopolymorphs of sodium naproxen in order to provide fundamental information concerning stability of the pseudopolymorphic forms. Furthermore, macroscopic phenomena of size reduction and anisotropic water-removal by dehydration were rationalized by microscopic aspects of crystal lattice structures. The heats of solution for each pseudopolymorph were estimated by fitting the solubility data with the vant Hoff equation, and their use was extended by the thermodynamic cycle developed in the present study. According to the thermodynamic cycle, for an enantiotropic system, a form with a lower degree of hydration always has the lower heat of solution than a form with a higher degree of hydration, implying that a form with a lower degree of hydration is more stable. The relative stabilities of the dihydrated, the monohydrated, and the anhydrous sodium naproxen at 0% relative humidity were investigated by dehydration of the dihydrated form and powder X-ray diffraction. The monohydrate is more stable than the dihydrate and the result was supported by isothermal TGA experiments. This research explained why powder-like crystals of the anhydrous sodium naproxen were produced by dehydration of hydrated forms. The surfaces of the dehydrated crystals displayed cracks aligned along the b-axis of the monohydrate. These cracks made the anhydrous crystals, which were produced from the monohydrated species, very brittle and, eventually, such crystals were disrupted into much smaller entities. In addition, the existence of water channels in the unit cells of the monohydrate facilitates the dehydration in a direction more rapidly, especially, along the b-axis of the monohydrate. Rapid removal of water in a specific direction caused anisotropic dehydration.
3

Solubility and phase transitions in batch and laminar-flow tubular crystallizers

Mendez del Rio, Jose R. 03 December 2004 (has links)
The research addressed in this thesis focuses on monitoring and characterization of pharmaceutical compounds by laser backscattering. In particular, this study covers two topics: (1) the determination of naproxen sodium solubility in water, and its phase transition; and (2) comparisons of batch and laminar flow tubular crystallizers for the production of paracetamol (acetaminophen) and D-mannitol. Using a Lasentec™ Focused Beam Reflectance Measurement (FBRM) device, the solubility of naproxen sodium in aqueous solutions was determined over a temperature range from 15.2 to 39.7 ℃ With the determination of the solubilities of two pseudopolymorphs, anhydrous and dihydrated naproxen sodium, the phase transition point between these two forms of the pharmaceutical compound was determined to occur at 30.3 ℃ Enthalpy of solution and metastable zone widths were also determined for the experimental conditions. Crystallizations of paracetamol and D-mannitol were performed in a batch crystallizer and in a laminar flow tubular crystallizer (LFTC) system. In the latter system, supersaturation was generated rapidly in the solution being transported through a temperature-controlled tube and recovered in a batch vessel where product crystals were grown to equilibration. Because of the rapid rate at which supersaturation was generated in the LFTC, the resulting crystals were of smaller mean size than those obtained from batch crystallizations. The total time required for crystallization was significantly less with the LFTC than with the batch unit. Additionally, the rapid cooling in the LFTC led to the formation of two different polymorphs of paracetamol, Forms I and II.

Page generated in 0.0393 seconds