• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multifunctional magnetic materials prepared by Pulsed Laser Deposition

Nagar, Sandeep January 2012 (has links)
Pulsed LASER deposition (PLD) is widely recognized as excellent deposition technique owing to stoichiometric transfer of target material, easy preparation and high quality. Thin films from few nanometers to micrometer regime can be fabricated with equal ease. Although a batch process is not suitable for mass scale industrial production, PLD is a versatile technique, efficient and convenient for high quality basic research.  This thesis illustrates the use of PLD technique to study the emerging trends in tailoring multifunctional magnetic thin films both from basic nanoscience and device development point of view.      After a comprehensive review of magnetism in chapter 1: entitled ‘A journey through classical to modern trends in magnetism, and multifunctional thin film devices’ followed by a reasonably thorough discussion on Pulsed Laser thin film technique in Chapter 2, we present: Studies of tailoring composite high energy product permanent magnetic FePtB based thin films for applications in NEMS /MEMS, (Chapter 3). Study of search for new multiferroic materials by investigating the properties of Chromites. Crystalline Chromites are antiferromagnetic below 150oC.  However depositing thin films by PLD of the crystalline 95.5% dense targets produced by Surface Plasma Sintering, we discovered that the resulting films were amorphous and ferromagnetic beyond room temperature. Moreover advanced spectroscopic techniques revealed that the amorphized state is metallic with Cr in a mixed valence state.   An understanding of the underlying physics of the observed phenomenon has been carried out based on first principles calculations.  These results are now being considered for publication in a high profile journal.  Extensive studies on the films showing that these materials are ferromagnetic, but not ferroelectric are discussed in chapter 4. A preliminary presentation of these studies was pier reviewed and published in MRS symposium proceedings. Fabrication of Room temperature, Transparent, high moment soft ferromagnetic amorphous Bulk metallic glass based FeBNbY thin films by PLD, suitable for Nanolithography in NEMS/MEMS device development .  (Chapter 5) From a basic study point of view on new trends on magnetism we present: 4. The use of PLD technique to demonstrate room temperature ferromagnetism in undoped MgO, and V-doped MgO thin films.  Both of these oxides which do not contain any intrinsically magnetic elements and are diamagnetic in their bulk form belong to a new class of magnetic films, the so called d0magnets signifying that robust above room temperature ferromagnetism arising from defects and controlled carriers and no occupied d-states can be tailored in semiconductors and insulators.  These, mostly ZnO and MgO based thin films which may be classified as Dilute Magnetic Semiconductors, DMS, and Dilute Magnetic Insulators, DMI, are now the materials of active interest in future Electronics involving components which exploit both charge and spin of electrons in the arena of SPINTRONICS. Extensive characterization of magnetic, electrical, optical properties and microscopic structure has ensured development of high quality magnetic materials for future applications. Further research on these promising materials is expected to yield new generation spintronic devices for better performance in terms of efficiency, energy consumption and miniaturization of sizes. / QC 20120511

Page generated in 0.1212 seconds