1041 |
Analysis of three stochastic models for discrete populationsCottrell, David Daniel January 2010 (has links)
Stochastic models of discrete populations appear in a broad range of contexts. In this thesis, three of these modelling settings are considered: epidemics which spread through both blood transfusion and surgery, stochastic gene expression, and the accumulation of error in velocity statistics in Molecular Dynamics simulations. We examine specific models in each case, illustrating methods for extracting quantitative statistical information from the systems, and discuss how each approach fits into the more general mathematical framework for discrete populations evolving under stochastic dynamics. / The stochastic epidemics are approximated by branching processes. Generating function techniques are used to derive distributions of the final number of infected individuals and contaminated blood or surgery products in the case that the epidemic eventually dies out (subcritical). This simple model provides a framework for extension to more complicated systems such as those that incorporate populations stratified by age or risk of exposure. To our knowledge, this mathematical approach has not been applied to these kinds of epidemic models elsewhere in the literature. / Stochastic models of gene expression are developed in a similar manner as the epidemic models, with the addition of spatial diffusion of the molecules. The presence of molecular motility leads to quantitative questions not present in the non-spatial model. We pose several of these questions and analytically calculate quantities related to the correlation of mRNA and protein molecules in the steady state. These quantities give a sense of the spatial scale of protein and mRNA clusters around a DNA point source. / Molecular Dynamics simulations typically involve the numerical integration of Newtonian dynamics governing the motion of systems of particles. Often the particles interact only through collisions, and a fixed time step integrator is used to move the system forward in time. In this case, small errors accrue in both position and velocity coordinates. By statistical mechanical considerations, we discard the positional information of the system and model it as a population of particles, distinguished only by their velocities, undergoing evolution via random collisions. Employing additional assumptions about the size of the velocity errors and the distribution of particle velocities, we construct a diffusion model for the drift in energy. This model is verified with simulations and is shown to accurately predict the energy drift in dilute systems for moderate time scales. / Les modèles stochastiques de populations discrètes apparaissent dans une variété de contextes. Dans cette thèse, nous considérons trois thèmes de la modéllisation : les épidémies qui se propagent par la transfusion sanguine et de la chirurgie, l'expression des gènes stochastique et l'accumulation d'erreurs dans les statistiques de vitesse de simulations de dynamique moleculaire. Nous examinons les modèles spécifiques dans chaque cas et en tour nous illustrons des méthodes d'extraction des statistiques quantitatives des systèmes d'information. En plus, nous discutons la façon dont les approches differentes s'inscrivent dans le cadre mathématique plus général pour des populations discrètes qui évoluent par les dynamiques stochastique. / Les épidémies stochastiques sont estimé par des processus de branchement et des techniques de fonctions génératrices les moments sont utilisés pour calculer des distributions de l'état finale du nombre de personnes infectés et des produits contaminé de sang ou de la chirugie dans le cas où l'épidémie est souscritique. Ce modèle simple fournit un cadre pour l'extension au systèmes plus complexes tels que ceux qui intègrent les populations stratifiés en fonction de l'age ou le risque d'exposition. À notre connaissance, cette approche mathématique n'a pas été appliquée À ce type d'épidémie de modèles ailleurs dans la littérature. / Les modèles stochastiques de l'expression des gènes sont développés d'un manière similaire aux modèles de l'épidémie, mais avec l'ajout de la diffusion spatiale des molécules. La présence de la motilité moléculaire mène À des nouvelles questions quantitatives qui ne sont pas posée par les modèle non-spatiales. Nous précisons plusieurs de ces questions et effectuons des calculs analytiques pour des quantités liés À la corrélation des molécules d'ARNm et de protéines À l'état stationnaire. Ces quantités donnent une idée de l'échelle spatiale de les grappes l'ARNm et de protéines autour d'un point source d'ADN. / Généralement, les simulations des Dynamiques Moléculaires impliquent l'intégration numérique des dynamiques Newtoniennes qui régissent le mouvement des systèmes de particules. Souvent, les particules interagissent uniquement par le biais de collisions et une méthode À pas de temps constant est utilisée pour intégrer les équations de motion. système dans le temps. Dans ce cas, des petites erreurs s'accumulent dans les deux coordonnées de position et de vitesse. Par des considérations de mécanique statistique, nous écartons l'information des position des particules et abordons le système comme une population de particules, distuinguée par leurs vitesses, en évolution aléatoire par des collisions. Employant des hypothèses de la taille de la vitesse d'erreurs et de la distribution des vitesses des particules, nous construisons un modèle de diffusion pour la dérive de l'énergie. Ce modèle est vérifiée par des simulations et il est indiqué de prévoir avec précision la dérive de l'énergie dans les systèmes À faibles densité avec un pas de temps modéré.
|
1042 |
On the metrizability problem for projective structures on surfacesMakhmali, Omid January 2011 (has links)
In this thesis, we will follow a paper by Bryant et al. in finding the necessary and sufficient conditions for the existence of a Levi-Civita connection within a given projective structure [gamma] on a surface. We will give an explicit formulation of a necessary condition, as an obstruction of order five in the Christoffel symbols of an arbitrary element of [gamma]. Our approach in finding this obstruction allows us to find sufficient conditions in the real analytic case as well. In terms of the Christoffel symbols of an arbitrary element of [gamma], the explicit forms of the sufficient conditions are of order six in generic case, and of order eight in non-generic case. All the formulations will be projectively invariant and will be expressed in point invariants of the second-order ODE whose integral curves are geodesics of [gamma]. We will use a machinery developed by Hitchin and LeBrun, that we call minitwistor theory, to find the moduli space of these integral curves. Using this machinery and the notion of densities on a manifold, we give geometric interpretations of the formulation of the problem and derive a projective property of the space of metrics whose Levi-Civita connections belong to [gamma]. / Dans cette thèse, nous analysons un travail de Bryant et al. portant sur l'obtention de conditions nécessaires et suffisantes pour l'existence d'une connexion de Levi-Civita au sein d'une structure projective [gamma] sur une surface. Nous donnons une formulation explicite d'une condition nécessaire sous la forme d'une obstruction d'ordre cinq sur les coefficients de Christoffel d'un élément arbitraire de [gamma]. Dans le cas analytique, notre approche nous permet d'obtenir des conditions suffisantes. En termes des coefficients de Christoffel d'un élément arbitraire de [gamma], ces conditions suffisantes sont d'ordre six dans le cas générique et d'ordre huit dans le cas non-générique. Toutes les formulations obtenues sont projectivement invariantes et exprimées en termes d'invariants ponctuels des equations différentielles ordinaires d'ordre deux dont les solutions les géodésiques de [gamma]. Nous utlisons une technique développée par Hitchin et LeBrun, appelée théorie des mini-twisteurs, pour trouver l'espace des modules de ces courbes intégrales. En utlisant cette technique et la notion de densité sur une variété, nous donnons des interprétations géométriques de la formulation du problème et dérivons une propriété projectivement invariante de l'espace des métriques dont la connexion de Levi-Civita appartient a [gamma].
|
1043 |
Characteristic function based inference methodsAtoyan, Tigran January 2011 (has links)
We present a method of performing parameter inference when we have an i.i.d. sample drawn from a parametric distribution with a known characteristic function but with densities or probability mass functions not known in closed form. The context we focus on is in making inference on regularly sampled Lévy processes of a known parametric form, as is often encountered in financial time series modeling. The method uses the empirical characteristic function, obtained from the sample, to find the parameter values which will minimize a specific distance function. We provide proofs of strong consistency and asymptotic normality of the obtained estimates. We also study the link between asymptotic efficiency and the choice of the distance function we choose to minimize, and we show that there are characteristic function based estimators with an asymptotic efficiency arbitrarily close to 1. We then propose an EM algorithm for making inference on Brownian motions evaluated at an independent stochastic time. We present the results of various simulation studies testing the ECF method, and then compare the characteristic function based methods to MLE methods in terms of efficiency and computation time. These results support the theoretic findings and also give some insight to the small sample properties of the studied estimators. We finally apply the ECF method to fit the Variance Gamma model to SPX500 data and compare the results with the fit obtained using an MLE method. / On présente une méthode d'inférence de paramètres lorsque l'on a un échantillon d'une distribution avec une fonction caractéristique connue mais avec une densité de probabilité inconnue. Le contexte sur lequel on se concentre est l'inférence paramétrique avec des données régulièrement échantillonnées d'un processus de Lévy, comme c'est souvent le cas dans la modélisation de séries temporelles financières. La méthode utilise la fonction caractéristique empirique, obtenue à partir des données, pour trouver les paramètres qui minimisent une fonction de distance spécifique. On présente les preuves de la consistence et de la normalité asymptotique des estimateurs obtenus. On étudie aussi le lien entre l'efficacité asymptotique et le choix de la fonction de distance que l'on choisit de minimiser, et on prouve qu'il y a des estimateurs basés sur des fonctions caractéristiques avec une efficacité asymptotique arbitrairement proche de 1. Ensuite, on propose un algorithme EM pour faire de l'inférence avec des mouvements browniens évalués à un temps stochastique indépendent. On présente les résultats d'expériments simulées qui testent la méthode à base de fonctions caractéristiques, et ensuite on compare cette méthode avec des méthodes MLE en termes de leur efficacité et le temps de calcul des algorithmes. Les résultats numériques supportent les résultats théoriques et donnent aussi un aperçu sur les propriétés des estimateurs pour des petits échantillons. Pour conclure, on applique la méthode à base de fonctions caractéristiques pour trouver les paramètres du modèle Variance Gamma pour les données de SPX500 et on compare les résultats avec ceux obtenus par une méthode MLE.
|
1044 |
Entropy production of a Guassian dynamical systemTomberg, Alexandre January 2011 (has links)
We give a self-contained presentation of classical results pertaining to Gaussian random fields, geared toward the application to nonequilibrium statistical mechanics of a Gaussian dynamical system. We then provide results about the existence and the form of the entropy production observable, along with the conditions necessary for the nonequilibrium steady state to occur. Finally, we consider a model consisting of two infinite chains of harmonic oscillators at different initial temperatures. By applying the general results to this model, we prove the existence of a nonequilibrium steady state and compute the expectation of the entropy production observable of this system in the steady state. As expected, the result depends on the temperature difference between the two parts of the chain so that the heat flows from hot to cold and ceases if the initial temperatures were the same. / Nous donnons une présentation indépendante de certains résultats classiques concernant les champs aléatoires gaussiens, orientée vers l'application à la mécanique statistique hors d'équilibre d'un système dynamique gaussien. Nous donnons ensuite des résultats sur l'existence et la forme de l'observable de production d'entropie, ainsi que les conditions nécessaires à l'état de non équilibre stable de se produire. Enfin, nous considérons un modèle composé de deux chaînes infinies d'oscillateurs harmoniques à températures initiales différentes. En appliquant les résultats généraux à ce modèle, nous prouvons l'existence d'un état de non équilibre stable et nous calculons l'espérance de l'observable de production d'entropie de ce système a l'état stationnaire. Comme prévu, le résultat dépend de la différence de températures entre les deux parties de la chaîne de sorte qu'il y ait un flux de chaleur du chaud au froid qui cesse si les températures initiales sont les mêmes.
|
1045 |
A class of residually finite groups isomorphic to fundamental groups of VH complexesPolák, Jason January 2011 (has links)
In a preprint, Ian Leary inquires whether two hyperbolic finitely presented groups are residually finite. We answer in the affirmative by showing that these groups belong to a class of groups, which we call the polygonal VH or PVH groups. To prove that a group is PVH we introduce a systematic tiling method for the standard 2-complex of the group, and deduce from the work of Daniel Wise that hyperbolic PVH groups are residually finite. / Dans un prépublication, Ian Leary se demande si deux groupes finitement hyperboliques et de présentation finie sont résiduellement finis. Nous donnons une réponse positive en montrant que ces groupes appartiennent à une classe de groupes que nous appelons les groupes VH ou groupes PVH. Pour démontrer qu'un groupe est PVH, nous introduisons une méthode systématique pour couvrir d'un pavage le 2-complexe standard du groupe, et déduisons des travaux de Daniel Wise les groupes PVH hyperboliques sont résiduellement finis.
|
1046 |
Membership problem in groups acting freely on non-archimedean treesNikolaev, Andrey January 2010 (has links)
Groups acting freely on $\mathbb Z^n$-trees ($\mathbb Z^n$-free groups) play a key role in the study of non-archimedean group actions. Following Stallings' ideas, we develop graph-theoretic techniques to investigate subgroup structure of $\mathbb Z^n$-free groups. As an immediate application of the presented method, we give an effective solution to the Uniform Membership Problem and the Power Problem in $\mathbb Z^n$-free groups. / Les groupes agissant librement sur les $\mathbb Z^n$-arbres (les groupes $\mathbb Z^n$-libres) ont un rôle clé dans l'étude des actions non-archimédiennes de groupes. Suite aux idées de Stallings, nous développons des techniques graphes-théoretique afin d'étudier la structure de sous-groupes des groupes $\mathbb Z^n$-libres. Une des applications immédiate de notre méthode, est une solution algorithmique du Problème d'Occurance Uniforme et du Problème de Puissance dans les groupes $\mathbb Z^n$-libres.
|
1047 |
Concentration of Laplace eigenfunctionsTousignant-Barnes, Joel January 2012 (has links)
In this thesis, we give a review of known results concerning the concentration of Laplace eigenfunctions in the high-energy limit. We review asymptotic bounds on Lp norms of eigenfunctions, and possible quantum limits, under a variety of hypotheses on the manifold. We prove a new result that states that if eigenfunctions converge weakly to a quantum limit on the n-torus, they must also do so on a "rescaled" n-torus. / Dans ce mémoire, nous résumons les résultats connus concernant la concentration des fonctions propres du laplacien dans la limite de haute énergie. Nous révisons les bornes asymptotiques sur les normes Lp des fonctions propres, et les limites quantiques admissibles, sous une variété d'hypothèses sur la variété. Nous prouvons un résultat nouveau qui stipule que si les fonctions propres convergent faiblement vers une limite quantique sur le n-tore, ils doivent aussi le faire sur le n-tore rééchelonné.
|
1048 |
Curves on a planeSmilovic, Mikhail January 2012 (has links)
In this thesis, we study the space of immersions from the circle to the plane Imm(S¹,R²), modulo the group of diffeomorphisms on S¹. We discuss various Riemannian metrics and find surprisingly that the L²-metric fails to separate points. We show two methods of strengthening this metric, one to obtain a non-vanishing metric, and the other to stabilize the minimizing energy flow. We give the formulas for geodesics, energy and give an example of computed geodesics in the case of concentric circles. We then carry our results over to the larger spaces of immersions from a compact manifold M to a Riemannian manifold (N, g), modulo the group of diffeomorphisms on M. / Dans cette thése, nous étudierons l'espace d'immersions d'un cercle au plan Imm(S¹,R²), modulo le groupe de difféomorphisme sur S¹. Nous discuterons de divers métriques riemanniennes et monterons la surprenante impossibilité de séparer des points dans la métrique L². Nous présenterons deux méthodes de renforcer cette métrique, une pour obtenir une métrique non-nulle, et une autre pour stabiliser le flot d'énergie. Nous donnerons les formules pour les géodésiques et l'énergie, et donnerons un exemple de calcul de géodésiques dans le cas des cercles concentriques. Nous étendrons alors nos résultats sur la plus grande espace d'immersion d'une variété M compacte à une variété riemannienne (N,g), modulo le groupe de difféomorphisme sur M.
|
1049 |
Complex Monge-Ampere equation and its applications in complex geometryZhang, Xiangwen January 2012 (has links)
The main threads of this thesis are related by the theme of the complex Monge-Ampère type equations. It consists of some analysis results from the partial differential equation aspect and several geometric consequences as applications.In the first part, we study the a priori estimates for complex Hessian type equations on Hermitian manifolds. These estimates are the key ingredients for the solvability of the corresponding equations by virtue of the continuity method. In particular, we establish the first and second order derivative estimates for complex Monge-Ampère equations which are analogous to Yau's estimates on Kãhler manifolds. In Chapter 3, we investigate the interior Schauder estimates of the solutions to complex Monge-Ampère equations. Moreover, aiming to extend such regularity results to more general geometric setting, we also establish the classical Bedford-Taylor's interior second order estimate and a local version of Calabi's third order estimate on Hermitian manifolds. The last two chapters of this thesis are devoted to the geometric problems related to complex Monge-Ampère type equations. In particular, we give some results on the nonnegative representation for the boundary class of Kãhler cone and the existence of generalized Kãhler-Einstein metrics. / Dans cette thèse, il est question de l'étude des équations de type Monge-Ampère complexes. On y présente une analyse basée sur les différentes techniques utilisées dans la théorie des équations aux dérivées partielles ainsi que certaines applications géométriques. En premier lieu, nous présentons l'estimation à priori des équations de type Hessienne complexes sur des variétés hermitiennes. Ces estimations sont indispensables à la résolution de ces équations par le biais des méthodes de continuité. Au fait, nous établirons des estimations sur la première et la seconde dérivée des équations Monge-Ampère complexes de la même manière faite par Yau sur les variétés kählériennes.Au troisième chapitre, nous étudions la régularité de Hölder intérieure des dérivées secondes de la solution pour les équations de type Monge-Ampère complexes. De plus, en visant la généralisation de ce type de résultats de régularité à des géométries plus généralee, on a obtenu une estimation de deuxième ordre de type Bedford-Taylor classique et une version locale des estimations de Calabi de troisième ordre sur des variétés hermitiennes. Les deux derniers chapitres de cette thèse sont consacrés aux problèmes géométriques reliés aux équations de type Monge-Ampère complexes. Nous donnons quelques résultats sur la représentation non négative pour la classe de frontière du cône de Kähler et l'existence des métriques généralisée Kähler-Einstein.
|
1050 |
On CAT(0) aspects of geometric group theory and some applications to geometric superrigidityBergeron, Maxime January 2012 (has links)
Since their popularization by Gromov in the eighties, CAT(0) metric spaces of bounded curvature as defined by Alexandrov have been the locus of great progress in infinite group theory. Surveying ideas and constructions of geometric group theory, we express a bias towards groups acting on structures of this kind. As such, swiftly acquainting the reader with the theory of CAT(0) spaces, we provide a variety of examples obtained by gluing together families of convex polyhedra along their isometric faces. In this context, Gromov's link condition provides a local-to-global framework for non-positive curvature. Combining this with tools from knot theory, such as the Dehn complex of an alternating knot projection, we demonstrate a result of Wise which states that the fundamental group of an alternating link complement is also the fundamental group of a non-positively curved complex. Using similar ideas, we also mention a construction of Wise relating any finitely generated group to the fundamental groups of some non-positively curved complexes. Besides providing such "explicit" constructions, we make use of tower lifts of combinatorial maps to prove Bridson and Haefliger's abstract result that every subgroup of the fundamental group of a non-positively curved two dimensional polyhedral complexes is the fundamental group of some compact non-positively curved two dimensional polyhedral complex. Then, having well established the inherent structure of CAT(0) spaces, we focus on classifying their isometries, group actions upon them, and how they extend to the visual boundary. The combinatorial approach is especially effective here when we prove Haglund's result that cell-preserving isometries of CAT(0) cube complexes are semi-simple.Finally, using the theory of generalized harmonic maps, we demonstrate the superrigidity result of Monod, Gelander, Karlsson and Margulis for reduced actions with no globally fixed point of irreducible uniform lattices in locally compact, compactly generated topological groups of higher rank on complete CAT(0) spaces. / Depuis leur popularisation par Gromov durant les années quatre-vingt, la théorie des espaces métriques à courbure bornée, dits CAT(0), fut à la base de grandes percées dans notre compréhension des groupes infinis. Survolant des constructions de la théorie géométrique des groupes, nous portons donc une attention particulière aux actions sur les espaces CAT(0) et commençcons notre traité par la construction de complexes CAT(0) obtenus en identifiant certaines faces isométriques d'ensembles de polyèdres convexes. Dans ce contexte, le critère du lien de Gromov nous permet de caractériser la courbure nonpositive globale de manière locale. Combinant ces idées à certaines techniques de la théorie des noeuds, nous démontrons un théorème de Wise reliant tout groupe fondamental du complément d'un entrelac alternants à un complexe de courbure nonpositive. Nous relatons aussi une construction similaire de Wise permettant de relier tout groupe présenté de manière finie au groupe fondamental d'un complexe à courbure nonpositive. Outre ces constructions concrètes, nous utilisons les tours de relèvement d'applications combinatoires afin de démontrer un théorème abstrait de Bridson et Haefliger concernant les sous-groupes de groupes fondamentaux de complexes à courbure non-positive. Ayant établi la structure des espaces CAT(0), nous passons en second lieu à la classification de leurs isométries et de leurs extensions à la bordification de ces espaces. L'approche combinatoire est d'une aide particulière lorsque nous prouvons le résultat de Haglund concernant la semi-simplicité d'isométries de complexes cubiques et offre un contraste par rapport à un résultat analogue de Brisdon dans le contexte des complexes polyhédraux. Finalement, en faisant usage de la théorie des applications harmoniques généralisées, nous démontrons le résultat de superrigidité de Monod, Gelander, Karlsson et Margulis pour les actions réduites sans point fixe sur les espaces métriques CAT(0) complets de réseaux uniformes et irréductibles dans des groupes de rang supérieur localement compacts engendrés par un ensemble de générateurs compact.
|
Page generated in 0.0737 seconds