• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating Bismuth as a Surrogate for Plutonium Electrorefining

Chipman, Greg 11 August 2023 (has links) (PDF)
Conducting research experiments on plutonium electrorefining is difficult due to the significant hazards and regulations associated with nuclear materials. Finding a surrogate for plutonium electrorefining studies would enable more fundamental research to be conducted. Potential surrogates were identified by determining the physical properties required to conduct electrorefining using a molten metal and molten salt in CaCl2 at 1123 K. More potential surrogates were identified by changing the matrix salt to be a LiCl-KCl-CaCl2 eutectic salt with electrorefining conducted at 673-773 K. Ce-CeCl3, In-InCl3, Zn-ZnCl2, Sn-SnCl2, and Bi-BiCl¬3 were investigated as potential plutonium electrorefining surrogates. Ce electrorefining in molten CaCl2 resulted in a difficult to separate colloid mixture of Ce, Ca and Cl. Electrorefining rates for In were too slow due to InCl3 volatilizing out of the molten salt. Zn was successfully electrorefined, but the metal obtained did not coalesce into one piece. Sn and Bi were successfully electrorefined and coalesced into solid product rings with high yields and coulombic efficiencies. While a surrogate could not be identified using the same conditions as plutonium electrorefining, two possible surrogates, Sn-SnCl2 and Bi-BiCl3,¬ were found that could imitate the physical configuration (i.e., molten salt on top of molten metal) of plutonium electrorefining at a reduced temperature using a eutectic LiCl-KCl-CaCl2 salt in place of CaCl2. Using this surrogate enables fundamental studies of aspects of plutonium electrorefining. One aspect of plutonium electrorefining research is to improve its efficiency and yield. Plutonium electrorefining is a time-intensive process which generates radioactive waste. Improvements in efficiency and yield can reduce process time and waste. One possible way of improving the efficiency of plutonium electrorefining is to study the impact of using an AC superimposed DC waveform. Four AC superimposed DC and two DC electrorefining runs were performed using bismuth as a plutonium surrogate. All six runs showed a high level of yield and coulombic efficiency. All six cathode rings were confirmed to be high-purity bismuth using scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDS). While the results were inconclusive about the ability of AC superimposed DC waveforms to increase the efficiency of bismuth electrorefining, applying an AC superimposed DC waveform did not appear to decrease the efficiency or yield of the process. The change in waveform also did not result in impurities being present in the product cathode ring. Bismuth, in addition to being identified as a viable plutonium surrogate, has been investigated as a potential liquid electrode for molten salt electrorefining. Because of this, its electrochemical properties are of interest. However, bismuth's electrochemical behavior has received scant attention in eutectic LiCl-KCl melts and no studies were found in the ternary LiCl-KCl-CaCl2 melts. LiCl-KCl-CaCl2 melts offer some advantages over eutectic LiCl-KCl, such as lower melting point and higher oxide solubility. Cyclic voltammetry, square wave voltammetry, chronoamperometry, chronopotentiometry and open-circuit chronopotentiometry were used to measure electrochemical parameters, such as diffusivity and standard redox potential of bismuth electrodeposition in LiCl-KCl and LiCl-KCl-CaCl2 eutectics.
2

Extraction des actinides et des lanthanides du combustible du réacteur rapide à sels fondus / Fuel reprocessing of the fast molten salt reactor : actinides et lanthanides extraction

Jaskierowicz, Sebastien 29 November 2012 (has links)
Le procédé de traitement du combustible du réacteur à sels fondus (réacteur de génération IV) est un procédé multi-étape dans lequell’extraction des actinides et des lanthanides utilise la technique d’extraction réductrice. Le développement d’un modèle analytique a montré que la mise en contact du sel combustible LiF-ThF4 avec une phase métallique constituée d'un mélange Bi-Li permet l’extraction sélective et quantitative des actinides dans un premier temps, puis l’extraction quantitative des lanthanides dans un second temps. La maitrise de ce procédé nécessite la connaissance des caractéristiques des phases salines impliquées dans le procédé. Les études des propriétés physico-chimiques des sels fluorures fondus ont permis de développer une technique de mesure de la fluoroacidité dans ces milieux via une mesure potentiométrique. Cette technique a permis d’établir un classement de différents mélanges de fluorures fondus en fonction de leur acidité relative. Par ailleurs, une méthode de détermination de la solvatation de solutés dans ces milieux a également été développée par électrochimie afin d’approfondir la connaissance du sel combustible (en particulier solvatation de ThF4 par les ions F-).L'extraction réductrice met également en jeu une phase métallique liquide. Une technique de préparation de cette phase a été développée par électro-réduction de lithium sur une électrode liquide de bismuth en milieu LiCl-LiF. Cette technique permet un bon contrôle de la fraction molaire de lithium introduite dans le bismuth, paramètre essentiel à l’efficacité de l’extraction.Enfin, afin d'optimiser le procédé général de traitement multi-étapes, des méthodes électrochimiques ont été proposées afin de régénérer les différentes phases liquides (salines et métalliques) mise en jeu lors de l’extraction. / The fuel reprocessing of the molten salt reactor (Gen IV concept) is a multi-steps process in which actinides and lanthanides extraction is performed by a reductive extraction technique. The development of an analytic model has showed that the contact between the liquid fuel LiF-ThF4 and a metallic phase constituted of Bi-Li provide firstly a selective and quantitative extraction of actinides and secondly a quantitative extraction of lanthanides. The control of this process implies the knowledge of saline phase properties. Studies of the physico-chemical properties of fluoride salts lead to develop a technique based on potentiometric measurements to evaluate the fluoroacidity of the salts. An acidity scale was established in order to classify the different fluoride salts considered.Another electrochemical method was also developed in order to determine the solvation properties of solutes in fluoride F- environment (and particularly ThF4 by F-)In reductive extraction technique, a metallic phase is also involved. A method to prepare this phase was developed by electro-reduction of lithium on a bismuth liquid cathode in LiCl-LiF melt. This technique allows to accurately control the molar fraction of lithium introduced into the liquid bismuth, which is a main parameter to obtain an efficient extraction.

Page generated in 0.0379 seconds