Spelling suggestions: "subject:"quantile""
41 |
Estimation des limites d'extrapolation par les lois de valeurs extrêmes. Application à des données environnementales / Estimation of extrapolation limits based on extreme-value distributions.Application to environmental data.Albert, Clément 17 December 2018 (has links)
Cette thèse se place dans le cadre de la Statistique des valeurs extrêmes. Elle y apporte trois contributions principales. L'estimation des quantiles extrêmes se fait dans la littérature en deux étapes. La première étape consiste à utiliser une approximation des quantiles basée sur la théorie des valeurs extrêmes. La deuxième étape consiste à estimer les paramètres inconnus de l'approximation en question, et ce en utilisant les valeurs les plus grandes du jeu de données. Cette décomposition mène à deux erreurs de nature différente, la première étant une erreur systémique de modèle, dite d'approximation ou encore d'extrapolation, la seconde consituant une erreur d'estimation aléatoire. La première contribution de cette thèse est l'étude théorique de cette erreur d'extrapolation mal connue.Cette étude est menée pour deux types d'estimateur différents, tous deux cas particuliers de l'approximation dite de la "loi de Pareto généralisée" : l'estimateur Exponential Tail dédié au domaine d'attraction de Gumbel et l'estimateur de Weissman dédié à celui de Fréchet.Nous montrons alors que l'erreur en question peut s'interpréter comme un reste d'ordre un d'un développement de Taylor. Des conditions nécessaires et suffisantes sont alors établies de telle sorte que l'erreur tende vers zéro quand la taille de l'échantillon augmente. De manière originale, ces conditions mènent à une division du domaine d'attraction de Gumbel en trois parties distinctes. En comparaison, l'erreur d'extrapolation associée à l'estimateur de Weissman présente un comportement unifié sur tout le domaine d'attraction de Fréchet. Des équivalents de l'erreur sont fournis et leur comportement est illustré numériquement. La deuxième contribution est la proposition d'un nouvel estimateur des quantiles extrêmes. Le problème est abordé dans le cadre du modèle ``log Weibull-tail'' généralisé, où le logarithme de l'inverse du taux de hasard cumulé est supposé à variation régulière étendue. Après une discussion sur les conséquences de cette hypothèse, nous proposons un nouvel estimateur des quantiles extrêmes basé sur ce modèle. La normalité asymptotique dudit estimateur est alors établie et son comportement en pratique est évalué sur données réelles et simulées.La troisième contribution de cette thèse est la proposition d'outils permettant en pratique de quantifier les limites d'extrapolation d'un jeu de données. Dans cette optique, nous commençons par proposer des estimateurs des erreurs d'extrapolation associées aux approximations Exponential Tail et Weissman. Après avoir évalué les performances de ces estimateurs sur données simulées, nous estimons les limites d'extrapolation associées à deux jeux de données réelles constitués de mesures journalières de variables environnementales. Dépendant de l'aléa climatique considéré, nous montrons que ces limites sont plus ou moins contraignantes. / This thesis takes place in the extreme value statistics framework. It provides three main contributions to this area. The extreme quantile estimation is a two step approach. First, it consists in proposing an extreme value based quantile approximation. Then, estimators of the unknown quantities are plugged in the previous approximation leading to an extreme quantile estimator.The first contribution of this thesis is the study of this previous approximation error. These investigations are carried out using two different kind of estimators, both based on the well-known Generalized Pareto approximation: the Exponential Tail estimator dedicated to the Gumbel maximum domain of attraction and the Weissman estimator dedicated to the Fréchet one.It is shown that the extrapolation error can be interpreted as the remainder of a first order Taylor expansion. Necessary and sufficient conditions are then provided such that this error tends to zero as the sample size increases. Interestingly, in case of the so-called Exponential Tail estimator, these conditions lead to a subdivision of Gumbel maximum domain of attraction into three subsets. In constrast, the extrapolation error associated with Weissmanestimator has a common behavior over the whole Fréchet maximum domain of attraction. First order equivalents of the extrapolation error are thenderived and their accuracy is illustrated numerically.The second contribution is the proposition of a new extreme quantile estimator.The problem is addressed in the framework of the so-called ``log-Generalized Weibull tail limit'', where the logarithm of the inverse cumulative hazard rate function is supposed to be of extended regular variation. Based on this model, a new estimator of extreme quantiles is proposed. Its asymptotic normality is established and its behavior in practice is illustrated on both real and simulated data.The third contribution of this thesis is the proposition of new mathematical tools allowing the quantification of extrapolation limits associated with a real dataset. To this end, we propose estimators of extrapolation errors associated with the Exponentail Tail and the Weissman approximations. We then study on simulated data how these two estimators perform. We finally use these estimators on real datasets to show that, depending on the climatic phenomena,the extrapolation limits can be more or less stringent.
|
42 |
Contributions à l'estimation de quantiles extrêmes. Applications à des données environnementalesEl Methni, Jonathan 07 October 2013 (has links) (PDF)
Cette thèse s'inscrit dans le contexte de la statistique des valeurs extrêmes. Elle y apporte deux contributions principales. Dans la littérature récente en statistique des valeurs extrêmes, un modèle de queues de distributions a été introduit afin d'englober aussi bien les lois de type Pareto que les lois à queue de type Weibull. Les deux principaux types de décroissance de la fonction de survie sont ainsi modélisés. Un estimateur des quantiles extrêmes a été déduit de ce modèle mais il dépend de deux paramètres inconnus, le rendant inutile dans des situations pratiques. La première contribution de cette thèse est de proposer des estimateurs de ces paramètres. Insérer nos estimateurs dans l'estimateur des quantiles extrêmes précédent permet alors d'estimer des quantiles extrêmes pour des lois de type Pareto aussi bien que pour des lois à queue de type Weibull d'une façon unifiée. Les lois asymptotiques de nos trois nouveaux estimateurs sont établies et leur efficacité est illustrée sur des données simulées et sur un jeu de données réelles de débits de la rivière Nidd se situant dans le Yorkshire en Angleterre. La seconde contribution de cette thèse consiste à introduire et estimer une nouvelle mesure de risque appelé Conditional Tail Moment. Elle est définie comme le moment d'ordre a>0 de la loi des pertes au-delà du quantile d'ordre p appartenant à ]0,1[ de la fonction de survie. Estimer le Conditional Tail Moment permet d'estimer toutes les mesures de risque basées sur les moments conditionnels telles que la Value-at-Risk, la Conditional Tail Expectation, la Conditional Value-at-Risk, la Conditional Tail Variance ou la Conditional Tail Skewness. Ici, on s'intéresse à l'estimation de ces mesures de risque dans le cas de pertes extrêmes c'est-à-dire lorsque p tend vers 0 lorsque la taille de l'échantillon augmente. On suppose également que la loi des pertes est à queue lourde et qu'elle dépend d'une covariable. Les estimateurs proposés combinent des méthodes d'estimation non-paramétrique à noyau avec des méthodes issues de la statistique des valeurs extrêmes. Le comportement asymptotique de nos estimateurs est établi et illustré aussi bien sur des données simulées que sur des données réelles de pluviométrie provenant de la région Cévennes-Vivarais.
|
43 |
Two statistical problems related to credit scoring / Tanja de la Rey.De la Rey, Tanja January 2007 (has links)
This thesis focuses on two statistical problems related to credit scoring. In credit scoring of individuals, two classes are distinguished, namely low and high risk individuals (the so-called "good" and "bad" risk classes). Firstly, we suggest a measure which may be used to study the nature of a classifier for distinguishing between the two risk classes. Secondly, we derive a new method DOUW (detecting outliers using weights) which may be used to fit logistic regression models robustly and for the detection of outliers.
In the first problem, the focus is on a measure which may be used to study the nature of a classifier. This measure transforms a random variable so that it has the same distribution as another random variable. Assuming a linear form of this measure, three methods for estimating the parameters (slope and intercept) and for constructing confidence bands are developed and compared by means of a Monte Carlo study. The application of these estimators is illustrated on a number of datasets. We also construct statistical hypothesis to test this linearity assumption. In the second problem, the focus is on providing a robust logistic regression fit and
the identification of outliers. It is well-known that maximum likelihood estimators of
logistic regression parameters are adversely affected by outliers. We propose a robust approach that also serves as an outlier detection procedure and is called DOUW. The approach is based on associating high and low weights with the observations as a result of the likelihood maximization. It turns out that the outliers are those observations to which low weights are assigned. This procedure depends on two tuning constants. A simulation study is presented to show the effects of these constants on the performance of the proposed methodology. The results are presented in terms of four benchmark datasets as well as a large new dataset from the application area of retail marketing campaign analysis.
In the last chapter we apply the techniques developed in this thesis on a practical credit scoring dataset. We show that the DOUW method improves the classifier performance and that the measure developed to study the nature of a classifier is useful in a credit scoring context and may be used for assessing whether the distribution of the good and the bad risk individuals is from the same translation-scale family. / Thesis (Ph.D. (Risk Analysis))--North-West University, Potchefstroom Campus, 2008.
|
44 |
Two statistical problems related to credit scoring / Tanja de la Rey.De la Rey, Tanja January 2007 (has links)
This thesis focuses on two statistical problems related to credit scoring. In credit scoring of individuals, two classes are distinguished, namely low and high risk individuals (the so-called "good" and "bad" risk classes). Firstly, we suggest a measure which may be used to study the nature of a classifier for distinguishing between the two risk classes. Secondly, we derive a new method DOUW (detecting outliers using weights) which may be used to fit logistic regression models robustly and for the detection of outliers.
In the first problem, the focus is on a measure which may be used to study the nature of a classifier. This measure transforms a random variable so that it has the same distribution as another random variable. Assuming a linear form of this measure, three methods for estimating the parameters (slope and intercept) and for constructing confidence bands are developed and compared by means of a Monte Carlo study. The application of these estimators is illustrated on a number of datasets. We also construct statistical hypothesis to test this linearity assumption. In the second problem, the focus is on providing a robust logistic regression fit and
the identification of outliers. It is well-known that maximum likelihood estimators of
logistic regression parameters are adversely affected by outliers. We propose a robust approach that also serves as an outlier detection procedure and is called DOUW. The approach is based on associating high and low weights with the observations as a result of the likelihood maximization. It turns out that the outliers are those observations to which low weights are assigned. This procedure depends on two tuning constants. A simulation study is presented to show the effects of these constants on the performance of the proposed methodology. The results are presented in terms of four benchmark datasets as well as a large new dataset from the application area of retail marketing campaign analysis.
In the last chapter we apply the techniques developed in this thesis on a practical credit scoring dataset. We show that the DOUW method improves the classifier performance and that the measure developed to study the nature of a classifier is useful in a credit scoring context and may be used for assessing whether the distribution of the good and the bad risk individuals is from the same translation-scale family. / Thesis (Ph.D. (Risk Analysis))--North-West University, Potchefstroom Campus, 2008.
|
45 |
Quantile-based inference and estimation of heavy-tailed distributionsDominicy, Yves 18 April 2014 (has links)
This thesis is divided in four chapters. The two first chapters introduce a parametric quantile-based estimation method of univariate heavy-tailed distributions and elliptical distributions, respectively. If one is interested in estimating the tail index without imposing a parametric form for the entire distribution function, but only on the tail behaviour, we propose a multivariate Hill estimator for elliptical distributions in chapter three. In the first three chapters we assume an independent and identically distributed setting, and so as a first step to a dependent setting, using quantiles, we prove in the last chapter the asymptotic normality of marginal sample quantiles for stationary processes under the S-mixing condition.<p><p><p>The first chapter introduces a quantile- and simulation-based estimation method, which we call the Method of Simulated Quantiles, or simply MSQ. Since it is based on quantiles, it is a moment-free approach. And since it is based on simulations, we do not need closed form expressions of any function that represents the probability law of the process. Thus, it is useful in case the probability density functions has no closed form or/and moments do not exist. It is based on a vector of functions of quantiles. The principle consists in matching functions of theoretical quantiles, which depend on the parameters of the assumed probability law, with those of empirical quantiles, which depend on the data. Since the theoretical functions of quantiles may not have a closed form expression, we rely on simulations.<p><p><p>The second chapter deals with the estimation of the parameters of elliptical distributions by means of a multivariate extension of MSQ. In this chapter we propose inference for vast dimensional elliptical distributions. Estimation is based on quantiles, which always exist regardless of the thickness of the tails, and testing is based on the geometry of the elliptical family. The multivariate extension of MSQ faces the difficulty of constructing a function of quantiles that is informative about the covariation parameters. We show that the interquartile range of a projection of pairwise random variables onto the 45 degree line is very informative about the covariation.<p><p><p>The third chapter consists in constructing a multivariate tail index estimator. In the univariate case, the most popular estimator for the tail exponent is the Hill estimator introduced by Bruce Hill in 1975. The aim of this chapter is to propose an estimator of the tail index in a multivariate context; more precisely, in the case of regularly varying elliptical distributions. Since, for univariate random variables, our estimator boils down to the Hill estimator, we name it after Bruce Hill. Our estimator is based on the distance between an elliptical probability contour and the exceedance observations. <p><p><p>Finally, the fourth chapter investigates the asymptotic behaviour of the marginal sample quantiles for p-dimensional stationary processes and we obtain the asymptotic normality of the empirical quantile vector. We assume that the processes are S-mixing, a recently introduced and widely applicable notion of dependence. A remarkable property of S-mixing is the fact that it doesn't require any higher order moment assumptions to be verified. Since we are interested in quantiles and processes that are probably heavy-tailed, this is of particular interest.<p> / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
|
46 |
Quatre essais sur les inégalités et l'instabilité macroéconomique / Four essays on inequality and macroeconomic instabilityGueuder, Maxime 22 December 2017 (has links)
Cette thèse porte sur l’étude des inégalités dans un cadre macroéconomique, d’un point de vue théorique ainsi qu’empirique. Dans un premier chapitre, j’écris et simule un modèle basé-agents capable de répliquer les distributions fat-tailed des richesses observées empiriquement dans les économies développées. Dans un second chapitre, je prolonge ce modèle théorique pour étudier l’impact économique des discriminations interpersonnelles et institutionnelles. Lorsque les discriminations institutionnelles cessent, l’état final des inégalités dépend de l’économie au moment de la fin de ces discriminations : plus l’économie est organisée, plus le temps nécessaire à une égalisation des revenus et richesses entre ethnies est long, voire infini. Dans un troisième chapitre empirique, j’étudie l’évolution des inégalités de salaire entre Noirs et Blancs aux États-Unis entre 1960 et 2015, en me concentrant sur la période 2000-2015. Je traite les biais de sélection liés à l’asymétrie raciale envers l’emprisonnement, et montre que l’écart - en conditionnant par l'âge et les diplômes - entre salaires médians des Noirs et des Blancs atteint un maximum en 2012. En utilisant la méthode de régression quantiles non-conditionnelles conjointement avec la décomposition de Blinder-Oaxaca, j’établis que la part non-expliquée de cet écart reste stable durant la Grande Récession. Enfin, dans une post-face, en utilisant les métadonnées de RePEC, j’établis que la part des articles scientifiques consacrés à l’étude des crises augmente significativement après 2008 pour 13 des 30 « top journals » en économie. / This PhD dissertation focuses on wealth and wage inequality, and the macro-economy. In a first chapter, I write and run a small macro agent-based model (M-ABM) in which I study the resultant distribution of wealth among households. I show that this model generates fat- tailed distributions of wealth in the household sector, as empirically observed in advanced economies. In a second chapter, I extend this model to study the macroeconomics of interpersonal and institutional discriminations against racial minorities. When discrimination is at work, racial disparities in income and wealth arise. The effect of the abolition of institutional discrimination is path-dependant: the more the economy is organized when this institutional change occurs, the more time it takes to get back to the counter-factual situation where no institutional discrimination was set up in the first place. In a third chapter, I study the evolution of the difference of median log-annual earnings between Blacks and Whites in the US between 1960 and 2015, focusing on the 2008 crisis. I control for selection arising from racial differentials in institutionalised population, and find that the unconditional racial wage gap attains a maximum in 2012. Controlling for age and education, I obtain the same result. Using unconditional quantile regressions, I show that the unexplained part of the unconditional racial wage gap has not increased during the crisis. Finally, in an afterword, I use metadata from RePEC to show that the share of economics papers published in the 13 of the 30 "top" journals containing "crisis" in their titles and/or abstracts has significantly increased in 2008.
|
47 |
Modely s Weibullovým rozdělením / Model with Weibull responsesKonečná, Tereza January 2017 (has links)
Tato diplomová práce se zabývá Weibullovými modely, přesněji dvouparametrickým Weibullovým rozdělením. Práce se zabývá odhady parametrů, a to čtyřmi variantami kvantilové metody, metodou maximální věrohodnosti a grafickou metodou Weibullova pravděpodobnostního grafu. Je uvedeno odvození odhadu parametrů pro jednovýběrovou analýzu rozptylu pro Weibullovo rozdělení. Jsou zde odvozeny vztahy pro model s konstantním parametrem alfa, s konstantním parametrem beta a s oběma konstantními parametry. Také jsou uvedeny testové statistiky pro rušivé parametry - skórový test, Waldův test a test založený na věrohodnostním poměru. V poslední kapitole je provedena aplikace jednotlivých představených metod. Srovnání metod je ukázáno pomocí grafů, histogramů a tabulek. Metody jsou naprogramovány v~softwaru R. Jejich funkčnost a vlastnosti jsme ověřili na dvou simulovaných souborech dat. Diplomová práce je zakončena příkladem tří simulovaných náhodných výběrů, na kterých byla provedena analýza pomocí zavedených metod.
|
48 |
ON SOME INFERENTIAL ASPECTS FOR TYPE-II AND PROGRESSIVE TYPE-II CENSORINGVolterman, William D. 10 1900 (has links)
<p>This thesis investigates nonparametric inference under multiple independent samples with various modes of censoring, and also presents results concerning Pitman Closeness under Progressive Type-II right censoring. For the nonparametric inference with multiple independent samples, the case of Type-II right censoring is first considered. Two extensions to this are then discussed: doubly Type-II censoring, and Progressive Type-II right censoring. We consider confidence intervals for quantiles, prediction intervals for order statistics from a future sample, and tolerance intervals for a population proportion. Benefits of using multiple samples over one sample are discussed. For each of these scenarios, we consider simulation as an alternative to exact calculations. In each case we illustrate the results with data from the literature. Furthermore, we consider two problems concerning Pitman Closeness and Progressive Type-II right censoring. We derive simple explicit formulae for the Pitman Closeness probabilities of the order statistics to population quantiles. Various tables are given to illustrate these results. We then use the Pitman Closeness measure as a criterion for determining the optimal censoring scheme for samples drawn from the exponential distribution. A general result is conjectured, and demonstrated in special cases</p> / Doctor of Philosophy (PhD)
|
49 |
Contribution à la modélisation spatiale des événements extrêmes / Contributions to modeling spatial extremal events and applicationsBassene, Aladji 06 May 2016 (has links)
Dans cette de thèse, nous nous intéressons à la modélisation non paramétrique de données extrêmes spatiales. Nos résultats sont basés sur un cadre principal de la théorie des valeurs extrêmes, permettant ainsi d’englober les lois de type Pareto. Ce cadre permet aujourd’hui d’étendre l’étude des événements extrêmes au cas spatial à condition que les propriétés asymptotiques des estimateurs étudiés vérifient les conditions classiques de la Théorie des Valeurs Extrêmes (TVE) en plus des conditions locales sur la structure des données proprement dites. Dans la littérature, il existe un vaste panorama de modèles d’estimation d’événements extrêmes adaptés aux structures des données pour lesquelles on s’intéresse. Néanmoins, dans le cas de données extrêmes spatiales, hormis les modèles max stables,il n’en existe que peu ou presque pas de modèles qui s’intéressent à l’estimation fonctionnelle de l’indice de queue ou de quantiles extrêmes. Par conséquent, nous étendons les travaux existants sur l’estimation de l’indice de queue et des quantiles dans le cadre de données indépendantes ou temporellement dépendantes. La spécificité des méthodes étudiées réside sur le fait que les résultats asymptotiques des estimateurs prennent en compte la structure de dépendance spatiale des données considérées, ce qui est loin d’être trivial. Cette thèse s’inscrit donc dans le contexte de la statistique spatiale des valeurs extrêmes. Elle y apporte trois contributions principales. • Dans la première contribution de cette thèse permettant d’appréhender l’étude de variables réelles spatiales au cadre des valeurs extrêmes, nous proposons une estimation de l’indice de queue d’une distribution à queue lourde. Notre approche repose sur l’estimateur de Hill (1975). Les propriétés asymptotiques de l’estimateur introduit sont établies lorsque le processus spatial est adéquatement approximé par un processus M−dépendant, linéaire causal ou lorsqu'il satisfait une condition de mélange fort (a-mélange). • Dans la pratique, il est souvent utile de lier la variable d’intérêt Y avec une co-variable X. Dans cette situation, l’indice de queue dépend de la valeur observée x de la co-variable X et sera appelé indice de queue conditionnelle. Dans la plupart des applications, l’indice de queue des valeurs extrêmes n’est pas l’intérêt principal et est utilisé pour estimer par exemple des quantiles extrêmes. La contribution de ce chapitre consiste à adapter l’estimateur de l’indice de queue introduit dans la première partie au cadre conditionnel et d’utiliser ce dernier afin de proposer un estimateur des quantiles conditionnels extrêmes. Nous examinons les modèles dits "à plan fixe" ou "fixed design" qui correspondent à la situation où la variable explicative est déterministe et nous utlisons l’approche de la fenêtre mobile ou "window moving approach" pour capter la co-variable. Nous étudions le comportement asymptotique des estimateurs proposés et donnons des résultats numériques basés sur des données simulées avec le logiciel "R". • Dans la troisième partie de cette thèse, nous étendons les travaux de la deuxième partie au cadre des modèles dits "à plan aléatoire" ou "random design" pour lesquels les données sont des observations spatiales d’un couple (Y,X) de variables aléatoires réelles. Pour ce dernier modèle, nous proposons un estimateur de l’indice de queue lourde en utilisant la méthode des noyaux pour capter la co-variable. Nous utilisons un estimateur de l’indice de queue conditionnelle appartenant à la famille de l’estimateur introduit par Goegebeur et al. (2014b). / In this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b).
|
50 |
Adaptive and efficient quantile estimationTrabs, Mathias 07 July 2014 (has links)
Die Schätzung von Quantilen und verwandten Funktionalen wird in zwei inversen Problemen behandelt: dem klassischen Dekonvolutionsmodell sowie dem Lévy-Modell in dem ein Lévy-Prozess beobachtet wird und Funktionale des Sprungmaßes geschätzt werden. Im einem abstrakteren Rahmen wird semiparametrische Effizienz im Sinne von Hájek-Le Cam für Funktionalschätzung in regulären, inversen Modellen untersucht. Ein allgemeiner Faltungssatz wird bewiesen, der auf eine große Klasse von statistischen inversen Problem anwendbar ist. Im Dekonvolutionsmodell beweisen wir, dass die Plugin-Schätzer der Verteilungsfunktion und der Quantile effizient sind. Auf der Grundlage von niederfrequenten diskreten Beobachtungen des Lévy-Prozesses wird im nichtlinearen Lévy-Modell eine Informationsschranke für die Schätzung von Funktionalen des Sprungmaßes hergeleitet. Die enge Verbindung zwischen dem Dekonvolutionsmodell und dem Lévy-Modell wird präzise beschrieben. Quantilschätzung für Dekonvolutionsprobleme wird umfassend untersucht. Insbesondere wird der realistischere Fall von unbekannten Fehlerverteilungen behandelt. Wir zeigen unter minimalen und natürlichen Bedingungen, dass die Plugin-Methode minimax optimal ist. Eine datengetriebene Bandweitenwahl erlaubt eine optimale adaptive Schätzung. Quantile werden auf den Fall von Lévy-Maßen, die nicht notwendiger Weise endlich sind, verallgemeinert. Mittels äquidistanten, diskreten Beobachtungen des Prozesses werden nichtparametrische Schätzer der verallgemeinerten Quantile konstruiert und minimax optimale Konvergenzraten hergeleitet. Als motivierendes Beispiel von inversen Problemen untersuchen wir ein Finanzmodell empirisch, in dem ein Anlagengegenstand durch einen exponentiellen Lévy-Prozess dargestellt wird. Die Quantilschätzer werden auf dieses Modell übertragen und eine optimale adaptive Bandweitenwahl wird konstruiert. Die Schätzmethode wird schließlich auf reale Daten von DAX-Optionen angewendet. / The estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.
|
Page generated in 0.084 seconds