• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 17
  • 12
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

On single-crystal solid-state NMR based quantum information processing

Moussa, Osama January 2010 (has links)
Quantum information processing devices promise to solve some problems more efficiently than their classical counterparts. The source of the speedup is the structure of quantum theory itself. In that sense, the physical units that are the building blocks of such devices are its power. The quest then is to find or manufacture a system that behaves according to quantum theory, and yet is controllable in such a way that the desired algorithms can be implemented. Candidate systems are benchmarked against general criteria to evaluate their success. In this thesis, I advance a particular system and present the progress made towards each of these criteria. The system is a three-qubit 13C solid-state nuclear magnetic resonance (NMR) based quantum processor. I report results concerning system characterization and control, pseudopure state preparation, and quantum error correction. I also report on using the system to test a central question in the foundation of quantum mechanics.
12

On single-crystal solid-state NMR based quantum information processing

Moussa, Osama January 2010 (has links)
Quantum information processing devices promise to solve some problems more efficiently than their classical counterparts. The source of the speedup is the structure of quantum theory itself. In that sense, the physical units that are the building blocks of such devices are its power. The quest then is to find or manufacture a system that behaves according to quantum theory, and yet is controllable in such a way that the desired algorithms can be implemented. Candidate systems are benchmarked against general criteria to evaluate their success. In this thesis, I advance a particular system and present the progress made towards each of these criteria. The system is a three-qubit 13C solid-state nuclear magnetic resonance (NMR) based quantum processor. I report results concerning system characterization and control, pseudopure state preparation, and quantum error correction. I also report on using the system to test a central question in the foundation of quantum mechanics.
13

UNIVERSAL CONTROL OF NOISELESS SUBSYSTEMS FROM SYSTEMS WITH ARBITRARY DIMENSION

Bishop, Clifford Allen 01 May 2012 (has links)
The development of a quantum computer presents one of the greatest challenges in science and engineering to date. The promise of more efficient computing based on entangled quantum states and the superposition principle has led to a worldwide explosion of interest in the fields of quantum information and computation. Among the number of hurdles which must first be cleared before we witness a physical realization are problems associated with environment-induced decoherence and noise more generally. However, the discovery of quantum error correction and the establishment of the accuracy threshold theorem provide us with the hope of someday harnessing the potential power a functioning fault-tolerant quantum information processor has to offer. This dissertation contributes to this effort by investigating a particular class of quantum error correcting codes, namely noiseless subsystem encodings. The passive approach to error correction taken by these encodings provides an efficient means of protection from symmetrically coupled system-environment interactions. Here I will present methods for determining the subsystem-preserving evolutions for noiseless subsystem encodings supported by arbitrary-dimensional physical quantum systems. Implications for universal, collective decoherence-free quantum computation using the derived operations are discussed. Moreover, I will present a proposal for an optical device which is capable of preparing a variety of these noiseless subsystem encodings through a postselection strategy.
14

Error Models for Quantum State and Parameter Estimation

Schwarz, Lucia 17 October 2014 (has links)
Within the field of Quantum Information Processing, we study two subjects: For quantum state tomography, one common assumption is that the experimentalist possesses a stationary source of identical states. We challenge this assumption and propose a method to detect and characterize the drift of nonstationary quantum sources. We distinguish diffusive and systematic drifts and examine how quickly one can determine that a source is drifting. Finally, we give an implementation of this proposed measurement for single photons. For quantum computing, fault-tolerant protocols assume that errors are of certain types. But how do we detect errors of the wrong type? The problem is that for large quantum states, a full state description is impossible to analyze, and so one cannot detect all types of errors. We show through a quantum state estimation example (on up to 25 qubits) how to attack this problem using model selection. We use, in particular, the Akaike Information Criterion. Our example indicates that the number of measurements that one has to perform before noticing errors of the wrong type scales polynomially both with the number of qubits and with the error size. This dissertation includes previously published co-authored material.
15

USING A NUMERICAL ALGORITHM TO SEARCH FOR DECOHERENCE-FREE SUB-SYSTEMS

Thakre, Purva 01 December 2018 (has links)
In this paper, we discuss the need for quantum error correction. We also describe some basic techniques used in quantum error correction which includes decoherence-free subspaces and subsystems. These subspaces and subsystems are described in detail. We also introduce a numerical algorithm that was used previously to search for these decoherence-free subspaces and subsystems under collective error. It is useful to search for them as they can be used to store quantum information. We use this algorithm in some specific examples involving qubits and qutrits. The results of these algorithm are then compared with the error algebra obtained using Young tableaux. We use these results to describe how the specific numerical algorithm can be used for the search of approximate decoherence-free subspaces and subsystems and minimal noise subsystems.
16

Teoria de correção de erros quânticos durante operações lógicas e medidas de diagnóstico de duração finita / Quantum error-correction theory during logical gates and finitetime syndrome measurements

Castro, Leonardo Andreta de 17 February 2012 (has links)
Neste trabalho, estudamos a teoria quântica de correção de erros, um dos principais métodos de prevenção de perda de informação num computador quântico. Este método, porém, normalmente é estudado considerando-se condições ideais em que a atuação das portas lógicas que constituem o algoritmo quântico não interfere com o tipo de erro que o sistema sofre. Além disso, as medidas de síndrome empregadas no método tradicional são consideradas instantâneas. Nossos objetivos neste trabalho serão avaliar como a alteração dessas duas suposições modificaria o processo de correção de erros. Com relação ao primeiro objetivo, verificamos que, para erros causados por ambientes externos, a atuação de uma porta lógica simultânea ao ruído pode gerar erros que, a princípio, podem não ser corrigíveis pelo código empregado. Propomos em seguida um método de correção a pequenos passos que pode ser usado para tornar desprezíveis os erros incorrigíveis, além de poder ser usado para reduzir a probabilidade de erros corrigíveis. Para o segundo objetivo, estudamos primeiro como medidas de tempo finito afetam a descoerência de apenas um qubit, concluindo que esse tipo de medida pode na verdade proteger o estado que está sendo medido. Motivados por isso, mostramos que, em certos casos, medidas de síndrome finitas realizadas conjuntamente ao ruído são capazes de proteger o estado dos qubits contra os erros mais eficientemente do que se as medidas fossem realizadas instantaneamente ao fim do processo. / In this work, we study the theory of quantum error correction, one of the main methods of preventing loss of information in a quantum computer. This method, however, is normally studied under ideal conditions in which the operation of the quantum gates that constitute the quantum algorithm do not interefere with the kind of error the system undergoes. Moreover, the syndrome measurements employed in the traditional method are considered instantaneous. Our aims with this work are to evaluate how altering these two suppositions would modify the quantum error correction process. In respect with the first objective, we verify that, for errors caused by external environments, the action of a logical gate simultaneously to the noise can provoke errors that, in principle, may not be correctable by the code employed. We subsequently propose a short-step correction method that can be used to render negligible the uncorrectable errors, besides being capable of reducing the probability of occurrence of correctable errors. For the second objective, we first study how finite-time measurements affect the decoherence of a single qubit, concluding that this kind of measurement can actually protect the state under scrutiny. Motivated by that, we demonstrate, that, in certain cases, finite syndrome measurements performed concurrently with the noise are capable of protecting more efficiently the state of the qubits against errors than if the measurements had been performed instantaneously at the the end of the process.
17

Υλοποίηση qubit και διόρθωση κβαντικού κώδικα

Χιώτης, Γιώργος 09 October 2014 (has links)
Η κατασκευή ενός ολοκληρωμένου κβαντικού υπολογιστή αποτελεί μια πρόκληση για τη σύγχρονη επιστήμη. Ο κβαντικός υπολογιστής μας δίνει την ελπίδα πως κάποια στιγμή στο κοντινό μέλλον, θα είμαστε σε θέση να λύνουμε προβλήματα ταχύτερα και πιο αποδοτικά από ότι κάνει ένας κλασσικός υπολογιστής σήμερα. Για παράδειγμα, ο κβαντικός αλγόριθμος παραγοντοποίησης του Shor [3] πετυχαίνει εκθετική επιτάχυνση έναντι του κλασσικού, κάτι που σημαίνει πως η χρήση του πρωτόκολλου κρυπτογράφησης RSA δεν θα είναι όσο ασφαλής είναι σήμερα. Αυτό θα έχει ως αποτέλεσμα μεγάλες αλλαγές στις επικοινωνίες και στις συναλλαγές στο προσεχές μέλλον. Στην παρούσα διπλωματική εργασία θα περιγράψουμε τις αρχές που πρέπει να πληρεί ένα κβαντικό σύστημα για να θεωρηθεί κβαντικός υπολογιστής, πώς υλοποιούμε ένα qubit που είναι η μονάδα πληροφορίας του και τέλος θα μιλήσουμε για το πώς κωδικοποιούμε την κβαντική πληροφορία ώστε να είμαστε σε θέση να τη διορθώσουμε. Αρχίζουμε με τη διατύπωση των αρχών της κβαντικής μηχανικής , όπως προκύπτουν από την πειραματική διαδικασία. Συνεχίζουμε με την υπεραγωγιμότητα, το φαινόμενο που μας επιτρέπει να χειριζόμαστε μακροσκοπικά της κβαντικές ιδιότητες της ύλης, όπως και κάποια ακόμα φαινόμενα, όπως αυτό του Meissner, που μας δίνουν τη δυνατότητα να δημιουργήσουμε το κυκλώμα που υλοποιεί το qubit. Τέλος, περιγράφουμε θεωρητικά ένα καθολικό σύνολο από κβαντικές πύλες και τα κυκλώματα διόρθωσης λαθών κβαντικού κώδικα. / The construction of an integrated quantum computer is a challenge for modern science. The quantum computer gives us hope that sometime in the near future, we will be able to solve problems faster and more efficiently than does a conventional computer today. For example, the Shor's quantum algorithm for factoring [3] gave exponential acceleration compared to the classical one, which means that the use of RSA encryption protocol will not be safe as it is today. This will result large changes in communications and transactions in the near future. In this paper we describe the principles that must meet a quantum system to be considered as a quantum computer, how do we implement a qubit which is the unit of information, and finally we'll talk about how we encode quantum information in order to be able to fix it . We begin with the formulation of the principles of quantum mechanics, derived from the experimental procedure. We continue with the superconductivity phenomenon that allows us to manipulate the macroscopic quantum properties of matter, and even some phenomena such as the Meissner, who enable us to create a circuit that implements the qubit. Finally, we describe theoretically a universal set of quantum gates and circuits of error correcting quantum code.
18

Uma proposta de um sistema criptografico de chave publica utilizando codigos convolucionais classicos e quanticos / A proposal of a cryptographic system of public key using classical and quantum convolutional codes

Santos, Polyane Alves 12 August 2018 (has links)
Orientador: Reginaldo Palazzo Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-12T20:22:38Z (GMT). No. of bitstreams: 1 Santos_PolyaneAlves_M.pdf: 825808 bytes, checksum: f4b4d556a54cfca0cb0a84dd5e07a7a3 (MD5) Previous issue date: 2008 / Resumo: A proposta de um sistema criptográfico de chave pública que utiliza códigos convolucionais de memória-unitária clássicos e quânticos apresentada neste trabalho, está baseada na utilização de transformações armadilha que, ao serem aplicadas as submatrizes reduzem a capacidade de correção de erros do código. Este processo proporciona um aumento no grau de privacidade da informação a ser enviada devido a dois fatores: para a determinação de códigos ótimos de memória unitária è necessário resolver o Problema da Mochila e a redução da capacidade de correção de erro dos códigos ocasionada pelo embaralhamento das colunas das submatrizes geradoras. São também apresentados neste trabalho, novos códigos convolucionais quânticos concatenados [(4, 1, 3)]. / Abstract: The proposal of a cryptographic system of public key that uses classical and quantum convolutional codes of unit-memory presented in this work, is based on the use of trapdoors functions which when applied to submatrices reduce the capacity of correction of errors of the code. This process gives us an increase in the degree of privacy of information being sent, because of two factors, namely: to establish good unit-memory codes is necessary to solve the knapsack problem, and the reduction of the capacity of correcting errors of codes provided by scrambling the columns of generating submatrices. We also present in this work, news quantum convolutional codes [(4, 1, 3)]. / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
19

Teoria de correção de erros quânticos durante operações lógicas e medidas de diagnóstico de duração finita / Quantum error-correction theory during logical gates and finitetime syndrome measurements

Leonardo Andreta de Castro 17 February 2012 (has links)
Neste trabalho, estudamos a teoria quântica de correção de erros, um dos principais métodos de prevenção de perda de informação num computador quântico. Este método, porém, normalmente é estudado considerando-se condições ideais em que a atuação das portas lógicas que constituem o algoritmo quântico não interfere com o tipo de erro que o sistema sofre. Além disso, as medidas de síndrome empregadas no método tradicional são consideradas instantâneas. Nossos objetivos neste trabalho serão avaliar como a alteração dessas duas suposições modificaria o processo de correção de erros. Com relação ao primeiro objetivo, verificamos que, para erros causados por ambientes externos, a atuação de uma porta lógica simultânea ao ruído pode gerar erros que, a princípio, podem não ser corrigíveis pelo código empregado. Propomos em seguida um método de correção a pequenos passos que pode ser usado para tornar desprezíveis os erros incorrigíveis, além de poder ser usado para reduzir a probabilidade de erros corrigíveis. Para o segundo objetivo, estudamos primeiro como medidas de tempo finito afetam a descoerência de apenas um qubit, concluindo que esse tipo de medida pode na verdade proteger o estado que está sendo medido. Motivados por isso, mostramos que, em certos casos, medidas de síndrome finitas realizadas conjuntamente ao ruído são capazes de proteger o estado dos qubits contra os erros mais eficientemente do que se as medidas fossem realizadas instantaneamente ao fim do processo. / In this work, we study the theory of quantum error correction, one of the main methods of preventing loss of information in a quantum computer. This method, however, is normally studied under ideal conditions in which the operation of the quantum gates that constitute the quantum algorithm do not interefere with the kind of error the system undergoes. Moreover, the syndrome measurements employed in the traditional method are considered instantaneous. Our aims with this work are to evaluate how altering these two suppositions would modify the quantum error correction process. In respect with the first objective, we verify that, for errors caused by external environments, the action of a logical gate simultaneously to the noise can provoke errors that, in principle, may not be correctable by the code employed. We subsequently propose a short-step correction method that can be used to render negligible the uncorrectable errors, besides being capable of reducing the probability of occurrence of correctable errors. For the second objective, we first study how finite-time measurements affect the decoherence of a single qubit, concluding that this kind of measurement can actually protect the state under scrutiny. Motivated by that, we demonstrate, that, in certain cases, finite syndrome measurements performed concurrently with the noise are capable of protecting more efficiently the state of the qubits against errors than if the measurements had been performed instantaneously at the the end of the process.
20

Quantum error correction

Almlöf, Jonas January 2012 (has links)
This thesis intends to familiarise the reader with quantum error correction, and also show some relations to the well known concept of information - and the lesser known quantum information. Quantum information describes how information can be carried by quantum states, and how interaction with other systems give rise to a full set of quantum phenomena, many of which have no correspondence in classical information theory. These phenomena include decoherence, as a consequence of entanglement. Decoherence can also be understood as "information leakage", i.e., knowledge of an event is transferred to the reservoir - an effect that in general destroys superpositions of pure states. It is possible to protect quantum states (e.g., qubits) from interaction with the environment - but not by amplification or duplication, due to the "no-cloning" theorem. Instead, this is done using coding, non-demolition measurements, and recovery operations. In a typical scenario, however, not all types of destructive events are likely to occur, but only those allowed by the information carrier, the type of interaction with the environment, and how the environment "picks up" information of the error events. These characteristics can be incorporated into a code, i.e., a channel-adapted quantum error-correcting code. Often, it is assumed that the environment's ability to distinguish between error events is small, and I will denote such environments "memory-less".  This assumption is not always valid, since the ability to distinguish error events is related to the \emph{temperature} of the environment, and in the particular case of information coded onto photons, <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?k_%7B%5Ctext%7BB%7D%7DT_%7B%5Ctext%7BR%7D%7D%5Cll%5Chbar%5Comega" /> typically holds, and one must then assume that the environment has a "memory". In this thesis, I describe a short quantum error-correcting code (QECC), adapted for photons interacting with a cold environment, i.e., this code protects from an environment that continuously records which error occurred in the coded quantum state. Also, it is of interest to compare the performance of different QECCs - But which yardstick should one use? We compare two such figures of merit, namely the quantum mutual information and the quantum fidelity, and show that they can not, in general, be simultaneously maximised in an error correcting procedure. To show this, we have used a five-qubit perfect code, but assumed a channel that only cause bit-flip errors. It appears that quantum mutual information is the better suited yardstick of the two, however more tedious to calculate than quantum fidelity - which is more commonly used. / Denna avhandling är en introduktion till kvantfelrättning, där jag undersöker släktskapet med teorin om klassisk information - men också det mindre välkända området kvantinformation. Kvantinformation beskriver hur information kan bäras av kvanttillstånd, och hur växelverkan med andra system ger upphov till åtskilliga typer av fel och effekter, varav många saknar motsvarighet i den klassiska informationsteorin. Bland dessa effekter återfinns dekoherens - en konsekvens av s.k. sammanflätning. Dekoherens kan också förstås som "informationsläckage", det vill säga att kunskap om en händelse överförs till omgivningen - en effekt som i allmänhet förstör superpositioner i rena kvanttillstånd.  Det är möjligt att med hjälp av kvantfelrättning skydda kvanttillstånd (t.ex. qubitar) från omgivningens påverkan, dock kan sådana tillstånd aldrig förstärkas eller dupliceras, p.g.a icke-kloningsteoremet. Tillstånden skyddas genom att införa redundans, varpå tillstånden interagerar med omgivningen. Felen identifieras m.h.a. icke-förstörande mätningar och återställs med unitära grindar och ancilla-tillstånd.Men i realiteten kommer inte alla tänkbara fel att inträffa, utan dessa begränsas av vilken informationsbärare som används, vilken interaktion som uppstår med omgivningen, samt hur omgivningen "fångar upp" information om felhändelserna. Med kunskap om sådan karakteristik kan man bygga koder, s.k. kanalanpassade kvantfelrättande koder. Vanligtvis antas att omgivningens förmåga att särskilja felhändelser är liten, och man kan då tala om en minneslös omgivning. Antagandet gäller inte alltid, då denna förmåga bestäms av reservoirens temperatur, och i det speciella fall då fotoner används som informationsbärare gäller typiskt <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?k_%7B%5Ctext%7BB%7D%7DT_%7B%5Ctext%7BR%7D%7D%5Cll%5Chbar%5Comega" />, och vi måste anta att reservoiren faktiskt har ett "minne". I avhandlingen beskrivs en kort, kvantfelrättande kod som är anpassad för fotoner i växelverkan med en "kall" omgivning, d.v.s. denna kod skyddar mot en omgivning som kontinuerligt registrerar vilket fel som uppstått i det kodade tillståndet.  Det är också av stort intresse att kunna jämföra prestanda hos kvantfelrättande koder, utifrån någon slags "måttstock" - men vilken? Jag jämför två sådana mått, nämligen ömsesidig kvantinformation, samt kvantfidelitet, och visar att dessa i allmänhet inte kan maximeras samtidigt i en felrättningsprocedur. För att visa detta har en 5-qubitarskod använts i en tänkt kanal där bara bitflip-fel uppstår, och utrymme därför finns att detektera fel. Ömsesidig kvantinformation framstår som det bättre måttet, dock är detta mått betydligt mer arbetskrävande att beräkna, än kvantfidelitet - som är det mest förekommande måttet. / <p>QC 20121206</p>

Page generated in 0.1183 seconds