• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 12
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 194
  • 81
  • 50
  • 43
  • 39
  • 37
  • 33
  • 29
  • 26
  • 25
  • 22
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Quasar microimaging

Bate, Nicholas Frazer January 2010 (has links)
Observations of gravitationally microlensed quasars offer a unique opportunity to probe quasar structure on extremely small scales. In this thesis, we conduct extensive microlensing simulations and compare with observational data to constrain quasar accretion discs, and conduct preliminary probes of broad emission line region structure. This analysis is done using a new single-epoch imaging technique that requires very little telescope time, and yet produces results that are comparable to those obtained from long-term monitoring campaigns. / We begin by exploring the impact of variable smooth matter percentage and source size on microlensing simulations. Adding a smooth matter component affects minimum and saddle point images differently, broadening the magnification distribution for the saddle point image significantly. However, increasing the radius of the background source washes out this difference. The observation of suppressed saddle point images can therefore only be explained by microlensing with a smooth matter component if the background source is sufficiently small. We use these simulations, in combination with I-band imaging of the lensed quasar MG 0414+0534 to constrain the radius of the quasar source. This demonstrates the viability of a single-epoch imaging method for constraining quasar structure. / This technique is then expanded to single-epoch multi-band observations, in order to constrain the radial profile of quasar accretion discs as a function of observed wavelength. We present new Magellan observations of two gravitationally lensed quasars: MG 0414+0534 and SDSS J0924+0219. We also analyse two epochs of Q2237+0305 data obtained from the literature. Our results are compared with four fidicial accretion disc models. At the 95 per cent level, only SDSS J0924+0219 is inconsistent with any of the accretion disc models. When we combine the results from all three quasars -- a first step towards assembling a statistical sample -- we find that the two steepest accretion disc models are ruled out with 68 per cent confidence. / In addition, we are also able to use our microlensing simulations to constrain the smooth matter percentages in the lenses at the image positions. In both MG 0414+0534 and SDSS J0924+0219 we find smooth matter percentages that are inconsistent with zero. A smooth matter percentage of approximately 50 per cent is preferred in MG 0414+0534, and approximately 80 per cent in SDSS J0924+0219. Q2237+0305 is usually assumed to have a smooth matter percentage of zero at the image positions, as they lie in the bulge of the lensing galaxy. Though our measurement is consistent with a zero smooth matter percentage, there is a peak in the probability distribution at a value 20 per cent. This is perhaps a hint of additional intervening structures along the line of sight to the background quasar. / We test the sensitivity of our accretion disc constraints to a range of modelling parameters. These include errors in lens modelling, Bayesian prior probability selection, errors in observational data, and the microlens mass function. Constraints on the power-law index relating source radius to observed wavelength are found to be relatively unaffected by changes in the modelling parameters. Constraints on source radii are found to be more strongly affected. / Finally, the broad emission line region of Q2237+0305 is examined. Gemini IFU observations are presented clearly showing differential microlensing across the velocity profile of the CIII] emission line. To analyse this signature, we present three simple broad emission line region models: a biconical outflow, a Keplerian disc, and spherical infall. A method is developed to compare the shapes of simulated flux ratio spectra with the observed spectrum. We are unable to discriminate between the biconical outflow and Keplerian disc models when we average over all viewing angles and orientations. The spherical infall model, however, does not fit the observed data. We also find that for the non-spherically symmetric geometries, low inclination angles are essentially incompatible with the observations. This analysis offers hope that with sufficiently high signal-to-noise observations, differential microlensing signatures may allow us to constrain the geometry and kinematics of this poorly understood portion of quasar structure.
72

Infrared identification of z > 5.5 quasar candidates /

Chajet, Laura S. January 2007 (has links)
Thesis (M.Sc.)--York University, 2007. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 67-69) Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR38756
73

Constraining compact dark matter with quasar equivalent widths from the Sloan Digital Sky Survey Early data release /

Wiegert, Craig Charles. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Physics, August 2003. / Includes bibliographical references. Also available on the Internet.
74

Demographics and evolution of super massive black holes in quasars and galaxies

Salviander, Sarah Triplett, 1971- 04 September 2012 (has links)
This dissertation addresses the co-evolutionary relationship between central super-massive black holes and host galaxies. This relationship is suggested by observed correlations between black hole mass (M[subscript BH]) and properties of the host galaxy bulge. We first discuss investigation of the relationship between MBH and host galaxy velocity dispersion, [sigma subscript asterisk], for quasars in the Sloan Digital Sky Survey (SDSS). We derive MBH from the broad emission line width and continuum luminosity, and [sigma subscript asterisk] from the width of narrow forbidden emission lines. For redshifts z < 0.5, our results agree with the locally-observed M[subscript BH]- [sigma subscript asterisk] relationship. For 0.5 < z < 1.2, the M[subscript BH]- [sigma subscript asterisk] relationship appears to evolve with redshift in the sense that bulges are too small for their black holes. Part of this apparent trend can be attributed to observational biases, including a Malmquist bias involving the quasar luminosity. Accounting for these biases, we find approximately a factor of two evolution in the M[subscript BH]- [sigma subscript asterisk] relationship between the present and redshift z [approximately equal] 1. The second topic involves a search for the largest velocity dispersion galaxies in the SDSS. Black holes in quasars can have M[subscript BH]exceeding 5 billion M[mass compared to the sun], implying [sigma subscript asterisk] > 500 km s−1 by the local M[subscript BH]- [sigma subscript asterisk] relationship. We present high signal-to-noise HET observations for eight galaxies at redshift z < 0.3 from the SDSS showing large [sigma subscript asterisk] while appearing to be single galaxies in HST images. The maximum velocity dispersion we find is [sigma subscript asterisk] = 444 km s−1, suggesting either that quasar black hole masses are overestimated or that the black hole - bulge relationship changes at high black hole mass. The third topic involves work contributed to co-authored papers, including: (1) evidence for recoiling black holes in SDSS quasars, (2) the [sigma][O III] - [sigma subscript asterisk] relationship in active galactic nuclei (AGN), and (3) accretion disk temperatures and continuum colors in quasars. Lastly, we discuss research in progress, including: (1) possible physical influences on the width of narrow emission lines of SDSS AGN, including the gravitational effect of the black hole, and (2) a search for binary AGN in the SDSS using double-peaked [O III] emission lines. / text
75

THE OPTICAL POLARIZATION OF QUASI-STELLAR AND BL LACERTAE OBJECTS

Moore, Richard Lee January 1981 (has links)
In this dissertation, I examine the optical linear polarization of quasi-stellar objects (QSOs) and BL Lacertae objects. I present extensive polarimetric observations of a large sample of QSOs, systematically analyze the correlations between polarization and other properties of QSOs, compare t
76

Imaging of complete samples of Z tilde 1 3C sources / Imaging of complete samples of redshift of approximately one 3C sources

Ridgway, Susan E January 1995 (has links)
Scientific symbol in title. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 118-124). / Microfiche. / xi, 124 leaves, bound ill. 29 cm
77

Demographics and evolution of super massive black holes in quasars and galaxies

Salviander, Sarah Triplett, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
78

Unification of QSOs via black hole and accretion properties

Yuan, Michael Juntao. Wills, Beverley J., Evans, Neal J., January 2004 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisors: Beverley J. Wills and Neal J. Evans, II. Vita. Includes bibliographical references. Also available from UMI.
79

Quasar-galaxy correlations and the detection of magnification bias /

Norman, Dara J. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (p. 125-129).
80

Quasars at the high redshift frontier

Bosman, Sarah Elena Ivana January 2017 (has links)
In recent years the formation of primordial galaxies, cosmic metal enrichment, and hydrogen reionisation have been studied using both refined observations and powerful numerical simulations. High-redshift quasars have become a ubiquitous tool in the study of this era with more than 115 quasars now spectroscopically confirmed at z > 6.0. In this thesis, I use spectra of high-redshift quasars to provide improved observational constraints through a mixture of existing and new techniques. I first investigate the claim of neutral gas around the most distant known quasar, ULASJ1120+0641(J1120), with a cosmological redshift of z=7.1. Its spectrum shows a relatively weak Lyman-α emission line, which has been interpreted as evidence of absorption by neutral gas. Attributing this to a Gunn-Peterson damping wing has led to claims that the intergalactic medium is at least 10% neutral at that redshift. However, these claims rely on a reconstruction of the unabsorbed quasar emission. Initial attempts using composite spectra of lower-redshift quasars mismatched the CIV emission line of J1120, a feature known to correlate with Lyman-α and which is strongly blueshifted in J1120. I attempt to establish whether this mismatch could explain the apparently weak Lyman-α emission line. I find that among a C IV-matched sample the Lyman-α line of J1120 is not anomalous. This raises doubts as to the interpretation of absorbed Lyman-α emission lines in the context of reionisation. I then use a high quality X-Shooter spectrum of the same z=7 quasar to measure the abundances of diffuse metals within one billion years of the Big Bang. I measure the occurrence rates of CIV, CII, SiII, FeII and MgII, producing the first measurement at z > 6 for many of these ions. I find that the incidence of CIV systems is consistent with a continuing decline in the total mass density of highly ionized metals, a trend seen at lower redshifts. The ratio CII/CIV, however, seems to remain constant or increase with redshift, in line with predictions from models which include a decline of the ionising ultraviolet background. The evolution in MgII appears somewhat more complex; while the number density of strong systems continues to decline at high redshift,the number density of weak systems remains high and may even increase. This could signal an increase with redshift in the cross-section of low-ionisation metals. Large numbers of weak MgII systems are also seen at z∼2, suggesting they were already in place when reionisation was ending. I use this X-Shooter spectrum to study metal absorbers associated with the z=7 quasar itself. I find that one such absorber shows signs of only partially covering the line-of-sight, and investigate the possible implications for the quasar’s environment. Finally, I investigate the evolution of the intergalactic medium’s Lyman-α opacity using spectra of quasars at 5.7 < z < 7.1. I assemble a sample of 92 quasar spectra, more than 3 times larger than previous samples. The sample consists of quasars drawn from DES-VHS, SDSS and SHELLQs, new reductions of archival data, and new data. I develop methods to quantify the opacity distribution, providing measurements of the distribution function up to z=6.1. I find that the Lyman-α opacity evolves strongly with redshift. The scatter may be even larger than previously appreciated, posing a serious challenge for models of reionisation.

Page generated in 0.283 seconds