• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-elastic scattering of ultracold neutrons /

Kwon, Oh-Sun. January 2005 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2005. / Typescript. Includes bibliographical references (leaves 135-143).
2

Optical characteristics of quasielastic scattering

Fowler, Thomas Kenneth, January 1957 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1957. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 99-100).
3

EFFECTS OF THREE-MODE FIELD INTERACTIONS IN LASER INSTABILITIES AND IN BEAT-FREQUENCY SPECTROSCOPY.

HENDOW, SAMI TOMA. January 1982 (has links)
Population pulsations are fluctuations in the population difference (of a two level system) due to the presence of two or more coherent waves interfering in the medium. In this work, we show that population pulsations generated by three waves, a central wave and two mode-locked sidebands, are responsible for both the multiwavelength and the single-wavelength instabilities of single-mode lasers containing homogeneously-broadened media. The role of the population pulsations in establishing these instabilities, however, diminish as the central mode is detuned away from the atomic resonance frequency. For homogeneously-broadened lasers, we find two regions of single-wavelength instability. The first is at line center, for which population pulsations are solely responsible, and the second is off line center where the unsaturated medium provides the required gain and anomalous dispersion. For the case of inhomogeneously-broadened lasers, we show that population pulsations significantly increase the instability range over that predicted by Casperson for single-mode bad-cavity lasers. Both the unidirectional ring and the standing-wave cavities are treated. The Fourier expansion technique, used in this work, for treating three-frequency operation in saturation spectroscopy is shown to be equivalent (in appropriate limits) to the linear stability analysis in laser theory and optical bistability. We also show, in single-sideband saturation spectroscopy, that for long interaction lengths propagation effects can significantly influence the absorption and dispersion coefficients of the medium. Finally, we show that under certain conditions the pronounced splittind effects of the population pulsations develop into regions of intense absorption.
4

Intensity auto- and cross-correlations and other properties of a 85Rb atom coupled to a driven, damped two-mode optical cavity

Hemphill, Patrick A. January 2009 (has links)
Thesis (M.S.)--Miami University, Dept. of Physics, 2009. / Title from first page of PDF document. Includes bibliographical references (p. Xx-Xx).

Page generated in 0.5452 seconds