• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse de textures dans l'espace hyperspectral par des méthodes probabilistes

Rellier, Guillaume 08 November 2002 (has links) (PDF)
Dans cette thèse, on aborde le problème de l'analyse de texture pour l'étude des zones urbaines. La texture est une notion spatiale désignant ce qui, en dehors de la couleur ou du niveau de gris, caractérise l'homogénéité visuelle d'une zone donnée d'une image. Le but de cette étude est d'établir un modèle qui permette une analyse de texture prenant en compte conjointement l'aspect spatial et l'aspect spectral, à partir d'images hyperspectrales. Ces images sont caractérisées par un nombre de canaux largement supérieur à celui des images multispectrales classiques. On désire tirer parti de l'information spectrale pour améliorer l'analyse spatiale. Les textures sont modélisées par un champ de Markov gaussien vectoriel, qui permet de prendre en compte les relations spatiales entre pixels, mais aussi les relations inter-bandes à l'intérieur d'un même pixel. Ce champ est adapté aux images hyperspectrales par une simplification évitant l'apparition de problèmes d'estimation statistique dans des espaces de grande dimension. Dans le but d'éviter ces problèmes, on effectue également une réduction de dimension des données grâce à un algorithme de poursuite de projection. Cet algorithme permet de déterminer un sous-espace de projection dans lequel une grandeur appelée indice de projection est optimisée. L'indice de projection est défini par rapport à la modélisation de texture proposée, de manière à ce que le sous-espace optimal maximise la distance entre les classes prédéfinies, dans le cadre de la classification. La méthode d'analyse de texture est testée dans le cadre d'une classification supervisée. Pour ce faire, on met au point deux algorithmes que l'on compare avec des algorithmes classiques utilisant ou non l'information de texture. Des tests sont réalisés sur des images hyperspectrales AVIRIS.

Page generated in 0.0793 seconds