Spelling suggestions: "subject:"réflectivité spectrale""
1 |
Flux de CO₂, conditions hydriques, et leurs relations avec divers indices spectraux en tourbière ombrotrophe boréaleLetendre, Jacinthe 12 April 2018 (has links)
Les relations unissant divers indices spectraux aux flux de CO2 et aux conditions hydriques ont été testées au sol pour une diversité de communautés végétales de tourbière ombrotrophe boréale. Les résultats indiquent que l'indice spectral NDVI est faiblement explicatif de la variation de l'échange écosystémique net et de la photosynthèse brute alors que les combinaisons d'indices NDVI/WI et NDVI*sPRI le sont modérément et que l'indice CI est le plus prometteur pour une caractérisation à plus grande échelle. En plus de permettre la correction de l'indice NDVI (c.-à-d. NDVI/Wl) dans la modélisation des flux de CO2, l'investigation des relations entre la réflectance spectrale et les conditions hydriques a permis de montrer que la réflectance spectrale au sol (WI) était indicatrice de la teneur en eau en surface dans les platières à sphaignes et de la profondeur de la nappe phréatique pour une plus grande gamme de communautés végétales.
|
2 |
Inter-reflections in computer vision : importance, modeling & application in spectral estimation / Inter-réflexion en vision par ordinateur : importance, modélisation and application en estimation spectraleDeeb, Rada 04 October 2018 (has links)
Dans cette thèse, nous étudions un phénomène optique souvent ignoré en vision par ordinateur : les inter-réflexions. Les inter-réflexions, qui peuvent être trouvées dans l’état de l’art sous le nom « illumination mutuelle », se produisent quand une surface concave est illuminée. Dans ce cas, un rayon lumineux venant de la source de lumière vers un point de la surface, va réfléchir vers d’autres points de la même surface plusieurs fois avant d’arriver à nos yeux, ou aux capteurs de l’appareil photo. Donc, un rayon inter-réfléchi entre les différents points de la surface concave, d’où le nom « inter-réflexions». Les inter-réflexions conduisent aux variations de couleurs, ou gradients de couleurs, sur la totalité de la surface concave. Ces variations sont plus au moins prononcées selon plusieurs facteurs comme la réflectance de la surface et sa géométrie. Dans ce manuscrit, nous allons montrer que ces variations de couleurs contiennent en elles des informations importantes qui méritent d’être utilisées en vision par ordinateur. Ces mêmes variations jouent un rôle important dans la perception ce qui permet à l’être humain une meilleure constance de couleur, comme montré par nos résultats empiriques. Dans l’objectif d’utiliser efficacement les inter-réflexions pour quelques applications en vision par ordinateur, nous introduisons dans ce manuscrit un modèle spectral d’inter-réflexions prenant en compte une infinité de rebonds. Ce modèle construit sur des bases radiométriques nous permet de définir la relation entre les valeurs RGB brut correspondant à la surface concave dans l’image d’un côté, et la réflectance spectrale et la géométrie de cette même surface, la distribution de puissance spectrale de l’éclairage (SPD), et les courbes des réponses spectrales de l’appareil photo de l’autre côté. Grâce à ce modèle, nous sommes capables d’étudier plusieurs applications d’inter-réflexions en estimation spectrale. Nous montrons que l’estimation de la réflectance spectrale à partir d’une seule image RGB, une tâche qui est quasi-impossible sans apprentissage même sous un éclairage connu, est devenue possible grâce aux inter-réflexions. Nos résultats ontdémontré que l’estimation de la réflectance spectrale d’une surface concave donne une précision similaire, et même parfois meilleure, en comparaison avec les approches de l’état de l’art qui ont besoin de trois images de la même surface prises sous trois différents éclairages. De plus, les inter-réflexions nous ont aidés à proposer une application plus concrète de l’estimation de la réflectance spectrale dans laquelle il est possible d’utiliser un spectre d’un éclairage standard sans nécessiter un pré-calibrage pour les paramètres de l’acquisition. Par la suite, nous démontrons que les inter-réflexions sont aussi utiles dans des applications qui utilisent des mires de couleurs, comme par exemple la caractérisation de l’appareil photo. La nature de l’inter-réflexion sur une surface d’une seule couleur conduit aux couleurs spéciales qui sont les résultats des multiplications de la réflectance spectrale avec elle-même de multiples fois. Utiliser ces couleurs avec notre modèle d’inter-réflexion aide à introduire de la non-linéarité sur les mires de couleurs et donc à obtenir une meilleure caractérisation spectrale. Par conséquent, utiliser des mires de couleurs 3D est plus bénéfique qu’ajouter des nouvelles couleurs aux mires 2D. Finalement, nous entraînons un réseau neuronal convolutif sur des images simulés d’inter-réflexions dans le but d’estimer à la fois la réflectance spectrale de la surface et la SPD de l’éclairage d’une seule image RGB. Nos résultats expérimentaux démontrent que notre approche est capable d’estimer les deux spectres avec une très bonne précision en comparaison avec les autres approches. De plus, cette approche fonctionne très bien sur les images réelles grâce aux niveaux de bruits ajoutés dans le processus d’apprentissage. / In this thesis, we study an optical phenomenon often ignored in computer vision, the interreflection phenomenon. Interreflections, which can also be found in the literature under the name mutual illumination happen whenever a concave surface is illuminated. As the name tells, a light ray coming from the light source and hitting a surface point will reflect toward some other point, then another, and so on, before reaching the camera sensor or the eye. Hence, a ray does inter-reflect between the different points of a concave surface. Interreflections lead to color variations, or color gradients, all over the concave surface. These variations are more or less pronounced depending on many factors including, but not limited to, the surface reflectance and its geometry. We will show in this manuscript that these color variations hold some important information which is worth to be used in computer vision. They also play an important role in perception leading to a better color constancy in human vision as demonstrated in our experiments. In order to be able to efficiently use interreflections in some computer vision applications, a spectral infinite-bounce model of interreflections is introduced in the manuscript. This radiometric model allows us to define the relation between the raw RGB values correspondingto the concave surface in the image on one side, and the spectral reflectance and the geometry of this surface, the spectral power distribution of the light and the spectral responses of the camera sensors on the other side. Thanks to this model, we were able to study some applications of interreflections in spectral estimation. We show that a task, such as spectral reflectance estimation form a single RGB image, which is almost impossible without learning even under known illuminant and spectral responses of the camera, is made possible thanks to interreflections. Our results show that, spectral reflectance estimation of a folded surface gives a similar accuracy and sometimes a better one when compared to the state of the art approaches that need three different images of the flat surface taken under three different illuminants. Moreover, interreflections help in proposing a more concrete application of spectral reflectance estimation where a standard light SPD can be used and no pre-calibration for the acquisition settings is needed. Later, we show that interreflections are useful in some applications which need color charts such as camera characterization. The nature of interreflections leads to special colors resulted from raising the spectral reflectance to multiple powers. Using these colors along with the interreflection model helps in introducing some non linearly-related information and thus in obtaining a better spectral characterization. Hence, using 3D color charts is more beneficial than adding new colors to 2D color charts. Finally, we train a convolutional neural network on simulated images of interreflections in order to get an estimation of both the spectral reflectance and the SPD of light from a single RGB image. The experimental results show that our approach is able to get both spectra with a very good accuracy compared to other approaches. In addition, this approach performs very well on real images thanks to the added noises in the training process.
|
3 |
Analyse d'images couleurs pour le contrôle qualité non destructif / Color images analysis for non-destructive quality controlHarouna Seybou, Aboubacar 23 September 2016 (has links)
La couleur est un critère important dans de nombreux secteurs d'activité pour identifier, comparer ou encore contrôler la qualité de produits. Cette tâche est souvent assumée par un opérateur humain qui effectue un contrôle visuel. Malheureusement la subjectivité de celui-ci rend ces contrôles peu fiables ou répétables. Pour contourner ces limitations, l'utilisation d'une caméra RGB permet d'acquérir et d'extraire des propriétés photométriques. Cette solution est facile à mettre en place et offre une rapidité de contrôle. Cependant, elle est sensible au phénomène de métamérisme. La mesure de réflectance spectrale est alors la solution la plus appropriée pour s'assurer de la conformité colorimétrique entre des échantillons et une référence. Ainsi dans l'imprimerie, des spectrophotomètres sont utilisés pour mesurer des patchs uniformes imprimés sur une bande latérale. Pour contrôler l'ensemble d'une surface imprimée, des caméras multi-spectrales sont utilisées pour estimer la réflectance de chaque pixel. Cependant, elles sont couteuses comparées aux caméras conventionnelles. Dans ces travaux de recherche, nous étudions l'utilisation d'une caméra RGB pour l'estimation de la réflectance dans le cadre de l'imprimerie. Nous proposons une description spectrale complète de la chaîne de reproduction pour réduire le nombre de mesures dans les phases d'apprentissage et pour compenser les limitations de l'acquisition. Notre première contribution concerne la prise en compte des limitations colorimétriques lors de la caractérisation spectrale d'une caméra. La deuxième contribution est l'exploitation du modèle spectrale de l'imprimante dans les méthodes d'estimation de réflectance. / Color is a major criterion for many sectors to identify, to compare or simply to control the quality of products. This task is generally assumed by a human operator who performs a visual inspection. Unfortunately, this method is unreliable and not repeatable due to the subjectivity of the operator. To avoid these limitations, a RGB camera can be used to capture and extract the photometric properties. This method is simple to deploy and permits a high speed control. However, it's very sensitive to the metamerism effects. Therefore, the reflectance measurement is the more reliable solution to ensure the conformity between samples and a reference. Thus in printing industry, spectrophotometers are used to measure uniform color patches printed on a lateral band. For a control of the entire printed surface, multispectral cameras are used to estimate the reflectance of each pixel. However, they are very expensive compared to conventional cameras. In this thesis, we study the use of an RGB camera for the spectral reflectance estimation in the context of printing. We propose a complete spectral description of the reproduction chain to reduce the number of measurements in the training stages and to compensate for the acquisition limitations. Our first main contribution concerns the consideration of the colorimetric limitations in the spectral characterization of a camera. The second main contribution is the exploitation of the spectral printer model in the reflectance estimation methods.
|
Page generated in 0.0651 seconds