Spelling suggestions: "subject:"differentialgleichungen"" "subject:"differenzialgleichungen""
1 |
Essays on Utility maximization and Optimal Stopping Problems in the Presence of Default RiskFeunou, Victor Nzengang 09 August 2018 (has links)
Gegenstand der vorliegenden Dissertation sind stochastische Kontrollprobleme, denen sich Agenten im Zusammenhang mit Entscheidungen auf Finanzmärkten gegenübersehen. Der erste Teil der Arbeit behandelt die Maximierung des erwarteten Nutzens des Endvermögens eines Finanzmarktinvestors. Für den Investor ist eine Beschreibung der optimalen Handelsstrategie, die zur numerischen Approximation geeignet ist sowie eine Stabilitätsanalyse der optimalen Handelsstrategie bzgl. kleinerer Fehlspezifikationen in Nutzenfunktion und Anfangsvermögen, von höchstem Interesse. In stetigen Marktmodellen beweisen wir Stabilitätsresultate für die optimale Handeslsstrategie in geeigneten Topologien.
Für hinreichend differenzierbare Nutzenfunktionen und zeitstetige Marktmodelle
erhalten wir eine Beschreibung der optimalen Handelsstrategie durch die Lösung eines
Systems von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs).
Der zweite Teil der Arbeit beschäftigt sich mit optimalen Stopproblemen für einen Agenten,
dessen Ertragsprozess von einem Ausfallsereignis abhängt. Unser Hauptinteresse gilt der Beschreibung der Lösungen vor und nach dem Ausfallsereignis und damit dem besseren Verständnis des Verhaltens des Agenten bei Auftreten eines Ausfallsereignisses.
Wir zeigen wie sich das optimale Stopproblem in zwei einzelne Teilprobleme zerlegen lässt:
eines, für das der zugrunde liegende Informationsfluss das Ausfallereignis nicht beinhaltet,
und eines, in welchem der Informationsfluss das Ausfallereignis berücksichtigt.
Aufbauend auf der Zerlegung des Stopproblems und der Verbindung zwischen
der Optimalen Stoptheorie und der Theorie von reflektierenden stochastischen Rückwärts-Differentialgleichungen (RBSDEs), leiten wir einen entsprechenden Zerlegungsansatz her,
um RBSDEs mit genau einem Sprung zu lösen. Wir beweisen neue Existenz- und Eindeutigkeitsresultate von RBSDEs mit quadratischem Wachstum. / This thesis studies stochastic control problems faced by agents in financial markets when making decisions. The first part focuses on the maximization of expected utility from terminal wealth for an investor trading in a financial market. Of utmost concern to the investor is a description of optimal trading strategy that is amenable to numerical approximation, and
the stability analysis of the optimal trading strategy w.r.t. "small" misspecification in his utility function and initial capital. In the setting of a continuous market model, we prove stability results for the optimal wealth process in the Emery topology and the uniform topology on semimartingales, and stability results for the optimal trading strategy in suitable topologies.
For sufficiently differentiable utility functions, we obtain a description of the optimal trading strategy in terms of the solution of a system of forward-backward stochastic differential equations (FBSDEs). The second part of the thesis deals with the optimal stopping problem
for an agent with a reward process exposed to a default event. Our main concern is to give a description of the solutions before and after the default event and thereby better understand the behavior of the agent in the presence of default. We show how the stopping problem can be decomposed into two individual stopping problems: one with information flow for which the default event is not visible, and another one with information flow which captures the default event. We build on the decomposition of the optimal stopping problem, and the link between the theories of optimal stopping and reflected backward stochastic differential equations (RBSDEs) to derive a corresponding decomposition approach to solve RBSDEs with a single jump. This decomposition allows us to establish existence and uniqueness results for RBSDEs with drivers of quadratic growth.
|
2 |
Robust aspects of hedging and valuation in incomplete markets and related backward SDE theoryTonleu, Klebert Kentia 16 March 2016 (has links)
Diese Arbeit beginnt mit einer Analyse von stochastischen Rückwärtsdifferentialgleichungen (BSDEs) mit Sprüngen, getragen von zufälligen Maßen mit ggf. unendlicher Aktivität und zeitlich inhomogenem Kompensator. Unter konkreten, in Anwendungen leicht verifizierbaren Bedingungen liefern wir Existenz-, Eindeutigkeits- und Vergleichsergebnisse beschränkter Lösungen für eine Klasse von Generatorfunktionen, die nicht global Lipschitz-stetig im Sprungintegranden sein brauchen. Der übrige Teil der Arbeit behandelt robuste Bewertung und Hedging in unvollständigen Märkten. Wir verfolgen den No-Good-Deal-Ansatz, der Good-Deal-Grenzen liefert, indem nur eine Teilmenge der risikoneutralen Maße mit ökonomischer Bedeutung betrachtet wird (z.B. Grenzen für instantanen Sharpe-Ratio, optimale Wachstumsrate oder erwarteten Nutzen). Durchweg untersuchen wir ein Konzept des Good-Deal-Hedgings für welches Hedgingstrategien als Minimierer geeigneter dynamischer Risikomaße auftreten, was optimale Risikoteilung mit der Markt erlaubt. Wir zeigen, dass Hedging mindestens im-Mittel-selbstfinanzierend ist, also, dass Hedgefehler unter geeigneten A-priori-Bewertungsmaßen eine Supermartingaleigenschaft haben. Wir leiten konstruktive Ergebnisse zu Good-Deal-Bewertung und -Hedging im Rahmen von Prozessen mit Sprüngen durch BSDEs mit Sprüngen, sowie im Brown''schen Fall mit Driftunsicherheit durch klassische BSDEs und mit Volatilitätsunsicherheit durch BSDEs zweiter Ordnung her. Wir liefern neue Beispiele, die insbesondere für versicherungs- und finanzmathematische Anwendungen von Bedeutung sind. Bei Ungewissheit des Real-World-Maßes führt ein Worst-Case-Ansatz bei Annahme mehrerer Referenzmaße zu Good-Deal-Hedging, welches robust bzgl. Unsicherheit, im Sinne von gleichmäßig über alle Referenzmaße mindestens im-Mittel-selbstfinanzierend, ist. Daher ist bei hinreichend großer Driftunsicherheit Good-Deal-Hedging zur Risikominimierung äquivalent. / This thesis starts by an analysis of backward stochastic differential equations (BSDEs) with jumps driven by random measures possibly of infinite activity with time-inhomogeneous compensators. Under concrete conditions that are easy to verify in applications, we prove existence, uniqueness and comparison results for bounded solutions for a class of generators that are not required to be globally Lipschitz in the jump integrand. The rest of the thesis deals with robust valuation and hedging in incomplete markets. The focus is on the no-good-deal approach, which computes good-deal valuation bounds by using only a subset of the risk-neutral measures with economic meaning (e.g. bounds on instantaneous Sharpe ratios, optimal growth rates, or expected utilities). Throughout we study a notion of good-deal hedging consisting in minimizing some dynamic risk measures that allow for optimal risk sharing with the market. Hedging is shown to be at least mean-self-financing in that hedging errors satisfy a supermartingale property under suitable valuation measures. We derive constructive results on good-deal valuation and hedging in a jump framework using BSDEs with jumps, as well as in a Brownian setting with drift uncertainty using classical BSDEs and with volatility uncertainty using second-order BSDEs. We provide new examples which are particularly relevant for actuarial and financial applications. Under ambiguity about the real-world measure, a worst-case approach under multiple reference priors leads to good-deal hedging that is robust w.r.t. uncertainty in that it is at least mean-self-financing uniformly over all priors. This yields that good-deal hedging is equivalent to risk-minimization if drift uncertainty is sufficiently large.
|
Page generated in 0.1128 seconds