1 |
Robust image description with laplacian profile and radial Fourier transform / Description robuste d'image par profil laplacien et transformée de Fourier radialeMavridou, Evanthia 25 November 2014 (has links)
L'objectif de cette thèse est l'étude d'un descripteur d'images adapté à une grande variété d'applications. Nous cherchons à obtenir un descripteur robuste et discriminant, facile à adapter et peu coûteux en calcul et en mémoire.Nous définissons un nouveau descripteur, composé de valeurs du Laplacien à différentes échelles et de valeurs d'une transformée de Fourier radiale, calculées à partir d'une pyramide Gaussienne. Ce descripteur capture une information de forme multi-échelle autour d'un point de l'image. L'expérimentation a montré que malgré une taille mémoire réduite les performances en robustesse et en pouvoir discriminant de ce descripteur sont à la heuteur de l'état de l'art.Nous avons expérimenté ce descripteur avec trois types de tâches différentes.Le premier type de tâche est la mise en correspondance de points-clés avec des images transformées par rotation, changement d'échelle, floutage, codage JPEG, changement de point de vue, ou changement d'éclairage. Nous montrons que la performance de notre descripteur est au niveau des meilleurs descripteurs connus dans l'état de l'art. Le deuxième type de tâche est la détection de formes. Nous avons utilisé le descripteur pour la création de deux détecteurs de personnes, construits avec Adaboost. Comparé à un détecteur semblable construit avec des histogrammes de gradients (HOG) nos détecteurs sont très compétitifs tout en utilisant des descripteurs sensiblement plus compacts. Le dernier type de tâche est la détection de symétries de réflexion dans des images "du monde réel". Nous proposons une technique de détection d'axes potentiels de symétries en miroir. Avec cette tâche nous montrons que notre descripteur peut être genéralisé à des situations complexes. L'expérimentation montre que cette méthode est robuste et discriminante, tout en conservant un faible coût en calcul et en mémoire. / In this thesis we explore a new image description method composed of a multi-scale vector of Laplacians of Gaussians, the Laplacian Profile, and a Radial Fourier Transform. This method captures shape information with different proportions around a point in the image. A Gaussian pyramid of scaled images is used for the extraction of the descriptor vectors. The aim of this new method is to provide image description that can be suitable for diverse applications. Adjustability as well as low computational and memory needs are as important as robustness and discrimination power. We created a method with the ability to capture the image signal efficiently with descriptor vectors of particularly small length compared to the state of the art. Experiments show that despite its small vector length, the new descriptor shows reasonable robustness and discrimination power that are competitive to the state of the art performance.We test our proposed image description method on three different visual tasks. The first task is keypoint matching for images that have undergone image transformations like rotation, scaling, blurring, JPEG compression, changes in viewpoint and changes in light. We show that against other methods from the state of the art, the proposed descriptor performs equivalently with a very small vector length. The second task is on pattern detection. We use the proposed descriptor to create two different Adaboost based detectors for people detection in images. Compared to a similar detector using Histograms of Oriented Gradients (HOG), the detectors with the proposed method show competitive performance using significantly smaller descriptor vectors. The last task is on reflection symmetry detection in real world images. We introduce a technique that exploits the proposed descriptor for detecting possible symmetry axes for the two reflecting parts of a mirror symmetric pattern. This technique introduces constraints and ideas of how to collect more efficiently the information that is important to identify reflection symmetry in images. With this task we show that the proposed descriptor can be generalized for rather complicated applications. The set of the experiments confirms the qualities of the proposed method of being easily adjustable and requires relatively low computational and storage requirements while remaining robust and discriminative.
|
Page generated in 0.0759 seconds