• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel inhibitors of poly adenine diphosphate ribose polymerase to potentiate DNA reactive drugs

Pemberton, Louise Claire January 1994 (has links)
Poly (adenine diphosphate-ribosyl)ation of a variety of nuclear proteins is the immediate response in most eukaryotic cells to DNA strand breaks. This modification is catalysed' by the chromatin bound enzyme Poly (ADP-ribose) polymerase (PADPRP). The enzyme is thought to be intimately involved in several cellular processes including cell differentiation, gene expression, transformation of oncogenes and repair of DNA damage. As a consequence, inhibitors of PADPRP are able to potentiate the cytotoxicity of many anti-tumour agents whose actions include DNA damage, and as such these inhibitors are potential resistance-modifying agents for use in cancer therapy. In order to probe the active site of the enzyme a series of potential mimics (i) of NAD' were synthesised from readily available 3-hydroxybenzamide. The conformation of the amide bond is considered to be important and for increased potency the amide carbonyl should be anti with respect to the nicotinamide C2-C3 bond. Based on this reported observation a series of novel inhibitors were synthesised, which include a series of benzoxazole-4-carboxamide analogues( ii) and 8-hydroxy-2- (substituted)quinazolin-4-one analogues (iii). The structure of the benzoxazole analogues are such that the amide is anchored into the required conformation by an intramolecular hydrogen bond between the carboxamide N-H and the benzoxazole nitrogen. The benzyloxybenzamide analogues had comparable potency to 3-hydroxybenzamide against PADPRP. However, both the benzoxazole-4-carboxamide and 8-hydroxy quinazolin-4-one series of analogues exhibited outstanding inhibitory activity against PADPRP. The most potent of the benzoxazole-4-carboxamide analogues (ii, R= phenyl) had an IC50 value of 2.1 p. M. Exceptional PADPRP inhibitory activity was observed in the 8-hydroxyquinazolin-4-one (iii) series, where R= CH3 (IC50 = 0.4 μ M) and R= 4-nitrophenyl (IC50 = 0.2 μM). Further in vitro evaluation has shown that 8-hydroxy-2-methylquinazolin-4[3H]-one potentiates cytotoxicity in temozolomide treated cells.

Page generated in 0.1241 seconds