• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2087
  • 753
  • 278
  • 189
  • 100
  • 67
  • 67
  • 67
  • 67
  • 67
  • 67
  • 60
  • 47
  • 44
  • 33
  • Tagged with
  • 4284
  • 706
  • 609
  • 430
  • 424
  • 353
  • 325
  • 324
  • 280
  • 241
  • 232
  • 223
  • 216
  • 216
  • 213
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

<>.

Vieth, Joshua A. January 2010 (has links)
Dissertation (Ph.D.)--University of Toledo, 2010. / "Submitted to the Graduate Faculty In partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Science." Title from title page of PDF document. "A Dissertation entitled"--at head of title. Non-Latin script record Bibliography: p. 68-101.
272

Human eosinophils and their activation by allergens via danger receptors

Redvall, Elin, January 2010 (has links)
Diss. (sammanfattning) Göteborg : Univ. , 2010.
273

Roles of phosphatidylserine in enveloped virus infection /

Coil, David A. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 84-100).
274

Effects of androgen receptor mutations on murine testis development and function /

Eacker, Stephen Matthew, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 87-114).
275

Dual effects of kynurenic acid on AMPA receptors /

Prescott, Christina Rapp. January 2005 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado, 2005. / Typescript. Includes bibliographical references (leaves 116-128). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
276

Computational studies of nuclear receptors : estrogen receptors, glucocorticoid receptors, and farnesoid X receptor

Chu, Kwun Pok 01 January 2009 (has links)
No description available.
277

Genome-wide annotation of chemosensory and glutamate-gated receptors, and related genes in Glossina morsitans morsitans tsetse fly

Obiero, George Fredrick Opondo January 2014 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the sole vectors of trypanosomes that cause nagana and sleeping sickness in animals and humans respectively in tropical Africa. Tsetse are unique: both sexes adults are exclusive blood-feeders, females are mated young and give birth to a single mature larva in sheltered habitats per pregnancy. Tsetse use chemoreception to detect and respond to chemical stimuli, helping them to locate hosts, mates, larviposition and resting sites. The detection is facilitated by chemoreceptors expressed on sensory neurons to cause specific responses. Specific molecular factors that mediate these responses are poorly understood in tsetse flies. This study aimed to identify and characterize genes that potentially mediate chemoreception in Glossina morsitans morsitans tsetse flies. These genes included sensory odorant (OR), gustatory (GR), ionotropic (IR), and related genes for odorant-binding (OBP), chemosensory (CSP) and sensory neuron membrane (SNMP) proteins. Synaptic transmission in higher brain sites may involve ionotropic glutamate-gated (iGluR) and metabotropic glutamate-gated (mGluR) receptors. The genes were annotated in G. m. morsitans genome scaffold assembly GMOY1.1 Yale strain using orthologs from D. melanogaster as query via TBLASTX algorithm at e-value below 1e-03. Positive blast hits were seeded as gene constructs in their respective scaffolds, and used as genomic reference onto which female fly-derived RNA sequence reads were mapped using CLC Genomics workbench suite. Seeded gene models were modified using RNA-Seq reads then viewed and re-edited using Artemis genome viewer tool. The genome was iteratively searched using the G. m. morsitans gene model sequences to recover additional similar hit sequences. The gene models were confirmed through comparisons against the NCBI conserved domains database (CDD) and non-redundant Swiss-Prot database. Trans-membrane domains and secretory peptides were predicted using TMHMM and SignalP tools respectively. Putative functions of the genes were confirmed via Blast2GO searches against gene ontology database. Evolutionary relationships amongst and between the genes were established using maximum likelihood estimates using best fitting amino acid model test in MEGA5 suite and PhyML tool. Expression profiles of genes were estimated using the RNA-seq data via CLCGenomics RNA-sequences analysis pipeline. Overall, 46 ORs, 14 GRs, and 19 IRs were identified, of which 21, 6 and 4 were manually identified for ORs, GRs, and IRs respectively. Additionally, 15 iGluRs, 6 mGluRs, 5 CSPs, 15 CD36-like, and 32 OBPs were identified. Six copies of OR genes (GmmOR41-46) were homologous to DmelOr67d, a single copy cis vacenyl acetate (cVA) receptor . Genes whose receptor homologs are associated with responses to CO2, GmmGR1-4, had higher expression profiles from amongst glossina GR genes. Known core-receptor homologs OR1, IR8a, IR25a and IR64a were conserved, and three species-specific divergent IRs (IR10a, IR56b and IR56d) were identified. Homologs of GluRIID, IR93a, and sweet taste receptors (Gr5a and Gr64a) were not identified in the genome. Homolog for LUSH protein, GmmOBP26, and sensory neuron membrane receptors SNMP1 and SNMP2 were conserved in the genome. Results indicate reduced repertoire of the chemosensory genes, and suggest reduced host range of the tsetse flies compared to other Diptera. Genes in multiple copies suggest their prioritization in chemoreception, which in turn may be tied to high specificity in host selection. Genes with high sequence conservation and expression profiles probably relate to their broad expression and utility within the fly nervous system. These results lay foundation for future comparative studies with other insects, provide opportunities for functional studies, and form the basis for re-examining new approaches for improving tsetse control tools and possible drug targets based on chemoreception.
278

Analysis of excitatory amino acid receptors in the rat spinal cord in vivo and in vitro

Magnuson, David Stuart Keith January 1988 (has links)
Several endogenous amino acids including L-glutamate and L-aspartate have potent excitatory effects in the central nervous system. They are thought to act as synaptic transmitters in many neural pathways including those in the spinal cord. Three distinct receptors have been described through which these excitatory amino acids exert their effects. These are referred to as quisqualate, kainate and N-methyl-D-aspartate (NMDA) receptors, after the exogenous excitants most specific for each. In addition, sub-types of the NMDA receptor have been proposed to account for differences observed in the actions of the endogenous excitant quinolinate (2,3-pyridine dicarboxylate) in various regions of the nervous system. The characterization of excitant amino acid receptors has been accomplished primarily using two or more potent antagonists which include D-(-)-2-amino-5-phosphonovalerate (APV), a specific NMDA antagonist, and kynurenate, a compound related to quinolinate which potently attenuates the actions of NMDA- and kainate-like excitants. Structure-activity studies of amino acid receptors were undertaken using standard extracellular recording and iontophoretic techniques in the dorsal horn of the spinal cord in vivo, and compared with the neocortex of the rat. In addition, a spinal cord slice preparation was developed wherein dorso-ventral longitudinal slices were prepared from the lumbar enlargement of weanling rats (50 - 125 g). The slices were maintained in an "interface" tissue bath of novel design. Extracellular recording of several hours duration and up to 8 hours after slice preparation were routinely possible. Conformationally restricted analogues of glutamate, aspartate and quinolinate were examined for agonist and antagonist actions in the rat spinal cord in vivo and in vitro. Compounds found to be excitants were compared directly with quisqualate, kainate, and NMDA for sensitivity to blockade by APV and kynurenate applied both iontophoretically and in the bathing medium; antagonist dose-response curves were constructed for the actions of APV and kynurenate against quisqualate, kainate, quinolinate and NMDA. The conformationally restricted compounds found to be antagonists were examined to determine their potency and specificity against excitations elicited by quisqualate, kainate, quinolinate and NMDA. Although quinolinate is known to be NMDA-like in the hippocampus and cortex, when compared to quisqualate, kainate and NMDA in the spinal cord in vitro, it proved to be unique. A fourth receptor (the "QUIN" receptor) is proposed to account for its actions in the spinal cord. Three of the isomers of 1-amino-1,3-cyclopentane dicarboxylate (ACPD), conformationally restricted analogues of glutamate, were potently blocked by APV and KYNA and were therefore classified as NMDA-like. The fourth, D-trans-ACPD. was indistinguishable from quinolinate in terms of both potency and sensitivity to antagonists. The (-) isomer of trans-1-amino-1,2-cyclopentane dicarboxylate proved to be an antagonist with greater potency against excitations elicited by quisqualate and kainate than those of NMDA. These findings are, in many ways, different from what has been observed in the hippocampal slice. Several pyridine derivatives were examined; 2,5- and 2,6-pyridine dicarboxylate were weak excitants behaving like quisqualate in the presence of APV and kynurenate. No other pyridines were excitatory; however 2,4-pyridine dicarboxylate was observed to be a weak, non-specific antagonist similar in action to acridinate (an antagonist closely related to kynurenate). None of the pyridine derivatives, save quinolinate, are excitatory in the hippocampus. Structural analysis of the active compounds tested, in consideration of previous studies, shows that three points of attachment (two carboxyl and one amino group) are necessary for activation of NMDA, quisqualate and quinolinate receptors in the spinal cord. The location of the distal or y-carboxyl group relative to the a ionic groups appears to be the primary factor determining the activity of a conforrnationally restricted compound. The absolute distance between the Y-carboxyl and α-carbon appears to play a secondary role in determining the action of a compound. / Medicine, Faculty of / Graduate
279

Effects of Whisker-Trimming on GABAA Receptors in S1 Cortex

Salazar, Eduardo 08 1900 (has links)
A number of studies have shown that sensory deprivation is associated with selective decreases in GABA, GAD, and GABA receptors, in deprived areas of visual and somatosensory cortex. Those studies focused on layer 4, a recipient of direct thalamocortical sensory input. However, supragranular layers 2/3 have been recently identified as a major locus of functional plasticity in sensory deprivation and long-term potentiation. To examine whether GABAA receptors in layers 2/3 are affected by sensory deprivation, rats had mystacial vibrissae in middle row C or rows ABDE trimmed for 6 weeks beginning in early adulthood. Layers 2/3 above the deprived and adjacent whisker barrels were located in tangential sections, using patterns of radial blood vessels as fiducial marks. In deprived whisker barrel columns, [3H]muscimol binding to GABAA receptors decreased by 12.8% ± 1.2 (P &lt; 0.001) in layers 2/3 and 11.4% ± 1.2 (P<0.001) in layer 4. Altered levels of GABAA α1 subunit (Fritschy et al., 1994) were indicated by reduced optical density of immunostaining, both in deprived layers 2/3 (6.4% ± 0.7; P&lt; 0.001) and in layer 4 (3.4% ± 1.0; P &lt; 0.005). Interestingly, Nissl staining density also decreased in deprived layers 2/3 (12.7% ± 1.8 P &lt; 0.001) and in 4 (6.0 ± 0.7 (P &lt; 0.001). The percent decreases were greater in layers 2/3 than in 4 for both GABAA α1 (P &lt; 0.05) and Nissl substance (P &lt; 0.005). The present results suggest that down-regulation in GABAA receptors may underlie the physiological signs of disinhibition observed in neurons of layer 2/3 and 4 in deprived whisker barrel columns.
280

Post-translational processing of the low density lipoprotein receptor

Ozinsky, Adrian January 1996 (has links)
The low density lipoprotein (LDL) receptor is a transmembrane glycoprotein that mediates the uptake of plasma LDL and thereby provides cholesterol to cells. During its synthesis in the endoplasmic reticulum, the LDL receptor folds and forms disulfide bonds in multiple cysteine-rich repeats. N- and 0-linked oligosaccharide chains are added in the endoplasmic reticulum and processed during passage through the Golgi apparatus, en route to the cell surface. The aim of this thesis was to study the influence of post-translational events on the synthesis of the LDL receptor. Experiments addressed: 1) the necessity of the compartmental organisation of the secretory pathway for the glycosylation of the LDL receptor; 2) the requirements for the formation of disulfide bonds; 3) the role for the chaperone, calnexin, in the folding of the LDL receptor; and 4) the manner in which folding was disrupted by mutations. Experiments were performed in cultured cells that were incubated with [³⁵S]methionine. Biosynthetically-labelled LDL receptor was immunoprecipitated and was analysed by SOS polyacrylamide gel electrophoresis.

Page generated in 0.0652 seconds