1 |
Structural stability and binding properties of soluble and membrane-anchored recombinant antibodies /Alfthan, Kaija. January 2001 (has links) (PDF)
Thesis (doctoral)--University of Helsinki, 2001. / Includes bibliographical references. Also available on the World Wide Web.
|
2 |
Engineering therapeutic antibody fragments targeting the anthrax toxinMabry, George Robert 28 August 2008 (has links)
Not available / text
|
3 |
RAG activity and BCR/TCR diversity : an investigation on the effects of RAG levels on joint diversity and a search for RAG-like activity in murine germ cells /Yuan, Sandy Wei Wei. January 2005 (has links)
Thesis (M.Sc.)--York University, 2005. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 100-108). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR19663
|
4 |
Engineering therapeutic antibody fragments targeting the anthrax toxinMabry, George Robert, Iverson, Brent L. January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Brent Iverson. Vita. Includes bibliographical references.
|
5 |
Recombinant antibodies for the study of livestock infection from basic genetics to single-chain Fvs /Hosseini-Nohdani, Arsalan. January 2002 (has links)
Thesis (Ph.D.) -- University of Glasgow, 2002. / Ph.D. thesis submitted to the Division of Infection and Immunity, Faculty of Biomedical and Life Sciences, University of Glasgow, 2002. Includes bibliographical references (p. 163-202). Print version also available.
|
6 |
Development of recombinant human monoclonal antibodies suitable for blood grouping using antibody engineering techniquesFiddes, Jane L. Sutton, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
Transfusion medicine is an important part of modern health care and the provision of reliably phenotyped red blood cells (RBC) is essential for safe and effective blood transfusions. For identification of many RBC antigens, monoclonal antibodies of either murine or human origin are available for use in agglutination assays, in which they perform as well as or better than the human polyclonal antibody preparations which they have replaced. However, the detection of some blood groups is still reliant on the use of human polyclonal antisera, which is a less reliable reagent source with respect to availability, batch to batch variation and bio-safety. The use of recombinant antibody and phage display technology for the discovery of new monoclonal antibodies with specificity for some of these RBC antigens has the potential to deliver an economical, unlimited supply of specific antibody reagents suitable for use in RBC phenotyping. Samples of human B cells from donors producing useful phenotyping antibodies were identified and transformed using Epstein Barr virus into lymphocyte cell lines. Antibody genes were obtained from the cell lines in the form ofRNA which was reverse transcribed, amplified by PCR and cloned into a phagemid vector system to generate several combinatorial antibody libraries. These antibody libraries were displayed on the surface of phage particles and subjected to antigen-driven selection by several rounds of phage display biopanning using soluble and cell based RBC antigens. In addition a large naIve library was biopanned against the same antigens in an attempt to isolate a wide range of antibodies suitable for blood typing. Several high quality combinatorial antibody libraries with respect to size (> 107 clones) and diversity were generated. Biopanning of recombinant libraries resulted in enrichment of phage antibodies specific for RBC antigens, and several clones were isolated which were shown to be specific for Duffy a antigen. The isolated antibodies would be ideal candidates for re-engineering into multivalent antibody molecules capable of direct agglutination of RBC and as such, have the potential to replace human polyclonal sera in the identification of Duffy a RBC antigen phenotyping.
|
7 |
Development of high throughput screening systems for the efficient production of antibody fragments in Escherichia coliSeo, Min Jeong, 1979- 04 September 2012 (has links)
Recombinant antibodies and antibody fragments have become powerful tools for therapy, in vivo and in vitro diagnostics, and laboratory research. However, the production of antibody fragments in high yield for preclinical and clinical trials can be a serious bottleneck in drug discovery. This dissertation describes the development of novel screening systems for isolating antibody fragments and alternatively, E. coli genes, that facilitate expression in E. coli. In the first part of this work, we have developed a screening system for isolating Fab mutants exhibiting 4~5 fold higher expression level at 37oC compared to the parental Fab, by utilizing the APEx 2-hybrid system and multi-color FACS as a screening tool. In the APEx 2-hybrid system, the bacterial periplasm constitutes the milieu for the association of membrane-anchored bait protein and solubly expressed, epitope-tagged prey protein. Upon disruption of the outer membrane, only prey proteins that bind to the bait remain cell-associated and are detected by flow cytometry using fluorescently labeled anti-epitope antibodies. In the second part of this work we developed a new strategy to engineer scFv that can be expressed in soluble and active form in the absence of disulfide bonds. This was achieved using a strain incapable of forming disulfide bonds in proteins expressed in its periplasm in combination with the APEx 2-hybrid system. The selected clones exhibited higher solubility, activity, and stability than that of the wild type scFv in the reducing condition of the cytoplasm. Finally, we sought to isolate E. coli gene fragments that can enhance IgG production in the periplasm of E. coli by a newly developed screening system based on soluble expression of IgG and E. coli genomic fragments. The isolated gene fragments, which are located between moeA and iaaA in the E. coli chromosome, improved the total expression of polypeptides of IgG and also assembly of IgG. / text
|
8 |
Development of high throughput screening systems for the efficient production of antibody fragments in Escherichia coliSeo, Min Jeong, 1979- January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
|
9 |
Detecting life on Mars and the life marker chip : antibody assays for detecting organic molecules in liquid extracts of Martian samplesRix, Catherine S. January 2012 (has links)
The Life Marker Chip instrument, which has been selected to fly as part of the 2018 ExoMars rover mission payload, aims to detect up to 25 organic molecules in martian rocks and regolith, as markers of extant life, extinct life, meteoritic in-fall and spacecraft contamination. Martian samples will be extracted with a solvent and the resulting liquid extracts will be analysed using multiplexed microarray-format immunoassays. The LMC is under development by an international consortium led by the University of Leicester and the work described within this thesis was carried out at Cranfield University as part of the consortium’s broader program of work preparing the LMC instrument for flight in 2018. Within this thesis four specific areas of LMC instrument development are addressed: the investigation of immunoassay compatible liquid extraction solvents, the study of likely interactions of martian sample matrix with immunoassays, the development of antibodies for the detection of markers of extinct life and demonstration of solvent extraction and immunoassay detection in a flight representative format. Cont/d.
|
10 |
Seleção, caracterização parcial e produção de fragmentos de anticorpos recombinantes humanos anti-glicopeptídeos miméticos de mucinas tumorais e a-distroglicana, por Phage Display / Selection, partial characterization, and production of human recombinant antibodies anti-mimetic glycopeptides of tumoral mucins and a-dystroglycan by Phage DisplayLeo, Thais Canassa De 23 January 2018 (has links)
Adenocarcinomas e distroglicanopatias são doenças graves que estão associadas a quadros de hipoglicosilação de mucinas tumorais, como a MUC1 (transmembrane glycoprotein Mucin 1) e de mucinas de ?-distroglicana (?-DG). Um dos mais importantes desafios associados à terapia anti-câncer refere-se ao desenvolvimento de estratégias terapêuticas que permitam o direcionamento da ação de drogas anti-tumorais para a célula cancerosa com o objetivo de evitar o acometimento de células saudáveis. Nessa linha, é crucial a construção de sistemas de liberação de medicamentos sítio específicos por meio de marcadores tumorais. Quanto ao diagnóstico das distroglicanopatias, atualmente este se baseia principalmente na observação de manifestações clínicas, biópsias musculares e medidas enzimáticas, sendo que os anticorpos monoclonais disponíveis no mercado não são específicos para a condição do músculo distrófico. Dessa forma, mucinas tumorais e mucinas de ?-DG modificadas tem sido consideradas potenciais alvos para o desenvolvimento de novas estratégias diagnósticas e/ou terapêuticas aplicáveis a estas doenças. Para este trabalho, foram sintetizados, em fase sólida, glicopeptídeos miméticos de MUC1 e ?-DG hipoglicosilados, os quais foram utilizados como ferramenta de busca por novos anticorpos recombinantes. Estes antígenos foram imobilizados em uma placa e sobre eles foi aplicada uma biblioteca de fragmentos de anticorpos (Fabs) humanos recombinantes para o desenvolvimento do processo de seleção pela tecnologia de Phage Display. Após quatro rounds consecutivos de seleção, os genes codificadores dos Fabs da biblioteca não selecionada e selecionada foram sequenciados e analisados in silico na plataforma ATTILA. Esta análise permitiu rastrear o enriquecimento dos domínios VH e VL durante a seleção, além de possibilitar a escolha de inúmeros clones para produção. Para este trabalho, quatro fragmentos de anticorpos scFvs recombinantes inéditos para a mucina tumoral MUC1 e ?-DG hipoglicosilados foram desenhados e clonados em vetor de expressão pET29(a) contendo um marcador de identificação (peptídeo FLAG) e outro de purificação (cauda de histidina). A expressão de um scFv recombinante anti-MUC1 foi realizada em E. coli BL21-DE3 pela adição de 0,5mM de IPTG com indução a 20ºC por 16 horas. A purificação foi realizada por cromatografia de afinidade em resina de níquel, seguida de gel filtração, sendo estas etapas monitoradas por SDS-PAGE. A identificação imunoquímica da proteína recombinante foi confirmada por Western Blot, utilizando o anticorpo anti-FLAG. Entende-se que este trabalho, por meio da produção de novas ferramentas biotecnológicas, poderá cooperar para o desenvolvimento de novas formas abordagens diagnósticas e/ou terapêuticas para tumores e distroglicanopatias. / Adenocarcinomas and dystroglycanopathies are serious diseases associated with hypoglycosylation of tumoral mucins, such as MUC1 (transmembrane glycoprotein Mucin 1) and ?-dystroglican mucins (?-DG). One of the most important challenges associated with anti-cancer therapy is the development of therapeutic strategies that allow the targeting of anti-tumor drugs to the cancer cell in order to avoid the involvement of healthy cells. In this regard, the construction of site-specific drug delivery systems by tumor markers is crucial. The diagnosis of dystroglicanopathies are currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic muscle condition. Thus, tumoral mucins and modified ?-DG mucins have been considered potential targets for the development of new diagnostic and/or therapeutic strategies applicable to these diseases. For this work, glycoproteins MUC1 and ?-DG hypoglycosylated mimetics were synthesized by solid phase reaction, and were used as a search tool for new recombinant antibodies. These antigens were immobilized in a plate and a library of recombinant human antibody (Fabs) fragments was applied thereon for the development of the screening process by Phage Display technology. After four consecutive rounds of selection, the Fabs coding genes from the unselected and selected library were sequenced and analyzed in silico on ATTILA platform. This analysis allowed us to track the enrichment of the VH and VL domains during selection process, and also presented several option of clones to choose for production. For this work, four novel fragments of recombinant scFvs antibodies specific for tumoral mucin MUC1 and ?-DG hypoglycosylated were designed and cloned into pET29 (a) expression vector containing an identification marker (FLAG peptide) and a purification tag (histidine tail). Expression of a recombinant anti-MUC1 scFv was performed on E. coli BL21-DE3 by the addition of 0.5 mM of IPTG with induction at 20°C for 16 hours. Purification was performed by affinity chromatography on nickel resin, followed by gel filtration, these steps being monitored by SDS-PAGE. Immunochemical identification of the recombinant protein was confirmed by Western Blot, using the anti-FLAG antibody. It is understood that this work, through the production of new biotechnological tools, could cooperate for the development of new forms of diagnostic and/or therapeutic approaches for tumors and dystroglicanopathies.
|
Page generated in 0.0757 seconds