Spelling suggestions: "subject:"recurrence.""
1 |
Continued Fractions and their InterpretationsHanusa, Christopher 01 April 2001 (has links)
The Fibonacci Numbers are one of the most intriguing sequences in mathematics. I present generalizations of this well known sequence. Using combinatorial proofs, I derive closed form expressions for these generalizations. Then using Markov Chains, I derive a second closed form expression for these numbers which is a generalization of Binet’s formula for Fibonacci Numbers. I expand further and determine the generalization of Binet’s formula for any kth order linear recurrence.
|
2 |
Recurrences : exploiting naturally occurring analogues / Recurrences : exploiting naturally occurring analoguesThiel, Marco January 2004 (has links)
In der vorliegenden Arbeit wird die Wiederkehr im Phasenraum ausgenutzt. Dabei werden drei Hauptresultate besprochen.
1. Die Wiederkehr erlaubt die Vorhersagbarkeit des Systems zu quantifizieren.
2. Die Wiederkehr enthaelt (unter bestimmten Voraussetzungen) sämtliche relevante Information über die Dynamik im Phasenraum
3. Die Wiederkehr erlaubt die Erzeugung dynamischer Ersatzdaten. / Recurrence plots, a rather promising tool of data analysis, have been introduced by Eckman et al. in 1987. They visualise recurrences in phase space and give an overview about the system's dynamics. Two features have made the method rather popular. Firstly they are rather simple to compute and secondly they are putatively easy to interpret. However, the straightforward interpretation of recurrence plots for some systems yields rather surprising results. For example indications of low dimensional chaos have been reported for stock marked data, based on recurrence plots.
In this work we exploit recurrences or ``naturally occurring analogues'' as they were termed by E. Lorenz, to obtain three key results. One of which is that the most striking structures which are found in recurrence plots are hinged to the correlation entropy and the correlation dimension of the underlying system. Even though an eventual embedding changes the structures in recurrence plots considerably these dynamical invariants can be estimated independently of the special parameters used for the computation.
The second key result is that the attractor can be reconstructed from the recurrence plot. This means that it contains all topological information of the system under question in the limit of long time series.
The graphical representation of the recurrences can also help to develop new algorithms and exploit specific structures. This feature has helped to obtain the third key result of this study. Based on recurrences to points which have the same ``recurrence structure'', it is possible to generate surrogates of the system which capture all relevant dynamical characteristics, such as entropies, dimensions and characteristic frequencies of the system. These so generated surrogates are shadowed by a trajectory of the system which starts at different initial conditions than the time series in question. They can be used then to test for complex synchronisation.
|
3 |
A contribuição do estudo das sequências recursivas para construção de modelos matemáticos no ensino médio / The contribution of the study of recursive sequences for the construction of mathematical models in high schoolMorais, Roselaine Santos de 26 October 2018 (has links)
Submitted by Roselaine Santos De Morais (morais_roselaine@hotmail.com) on 2018-11-23T01:58:26Z
No. of bitstreams: 1
Dissertação Final.pdf: 6644535 bytes, checksum: c2604a9569fe179a19e3ac2aecd59592 (MD5) / Rejected by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
- Falta a capa.
- Página de rosto: falta a cidade e o estado. Veja o modelo no site da seção de pós-graduação: http://igce.rc.unesp.br/index.php#!/instituicao/diretoria-tecnica-academica/secao-tecnica-de-pos-graduacao/
ou
https://drive.google.com/file/d/1a7VK766HL8ElEHAWicmVeX-S7ZU-xehY/view
- Ficha catalográfica está incorreta: favor elaborar pelo site da biblioteca: https://www.biblioteca.unesp.br/ficha/
Agradecemos a compreensão. on 2018-11-23T12:36:41Z (GMT) / Submitted by Roselaine Santos De Morais (morais_roselaine@hotmail.com) on 2018-11-23T13:15:58Z
No. of bitstreams: 1
Dissertação Final 2.pdf: 6534212 bytes, checksum: 07130515ef9670dfc137892b556ee98f (MD5) / Rejected by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo:
- Falta a capa: a versão digital deve ser idêntica à versão impressa. Por gentileza, digitalize a capa e coloque no início do arquivo.
Agradecemos a compreensão. on 2018-11-23T15:39:06Z (GMT) / Submitted by Roselaine Santos De Morais (morais_roselaine@hotmail.com) on 2018-11-23T16:23:35Z
No. of bitstreams: 1
Dissertação final 3.pdf: 6550039 bytes, checksum: c8d84089602862585f768088467276f0 (MD5) / Approved for entry into archive by Ana Paula Santulo Custódio de Medeiros null (asantulo@rc.unesp.br) on 2018-11-23T18:29:58Z (GMT) No. of bitstreams: 1
morais_rs_me_rcla.pdf: 6519614 bytes, checksum: a25c60d2a9597aa0b03f2b5513cf1220 (MD5) / Made available in DSpace on 2018-11-23T18:29:58Z (GMT). No. of bitstreams: 1
morais_rs_me_rcla.pdf: 6519614 bytes, checksum: a25c60d2a9597aa0b03f2b5513cf1220 (MD5)
Previous issue date: 2018-10-26 / Inspirada na Modelagem Matemática proposta por Bassanezi, mas entusiasmada com a possibilidade de aplicação proposta por Burak, neste trabalho busquei entender como o estudo das Recorrências Lineares de Primeira Ordem poderia contribuir para a construção de modelos matemáticos, em especial, fórmulas inerentes à Matemática Financeira, com alunos da 1ª série do Ensino Médio, utilizando, para isso, Matemática acessível aos mesmos e inteiramente imersa em um tema único e em suas ramificações, envolvendo no processo, simultaneamente, aprendizagem matemática – símbolos, algoritmos e técnicas de resolução –, interação entre a Matemática desenvolvida e a realidade do aluno – contexto sociocultural –, auxílio da tecnologia – Excel e Geo- gebra para observação de regularidades e compreensão dos processos e interpretação dos dados, além de Word e Power Point para escrita e apresentacão da atividade, respectivamente –, o desenvolvimento do aluno como protagonista de seu processo de aprendizagem e, por fim, a interdisciplinaridade. Os resultados foram tão positivos que repercutiram na comunidade escolar e culminaram no convite feito pela Diretoria de Ensino de Piracicaba para que o trabalho fosse adaptado para exposição em uma competição de pesquisas nos moldes de Iniciacão Científica na Universidade Metodista de Piracicaba – Unimep. / Inspired by the mathematical modeling proposed by Bassanezi, but enthusiastic about the possibility of application proposed by Burak, in this work I tried to understand how the study of Linear Recurrences of First Order could contribute to the construction of mathematical models, especially formulas inherent to Financia lMathematics, with students of the 1st grade of the High School, using, for this, Mathematics accessible to them and entirely immersed in a single theme and its ramifications, involving in the process simultaneously mathematical learning - symbols, algorithms and resolution techniques - interaction between developed mathematics and student reality - sociocultural context -, technology assistance - Excel and Geogebra for observation of regularities and understanding of processes and interpretation of data, in addition to Word and Power Point for writing and presentation of the activity, respectively -, the development of the student as the protagonist of their learning process and, finally, interdisciplinarity. The results were so positive that they reverberated in the school community and culminated in the invitation made by the Teaching Board of Piracicaba so that the work was adapted for exhibition in a competition of research in the form of Scientific Initiation at the Methodist University of Piracicaba - Unimep.
|
4 |
Recorrências: Conceitos e AplicaçõesSimões, Diêgo Ayllo da Silva 27 February 2014 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-10-20T12:32:50Z
No. of bitstreams: 2
arquivototal.pdf: 2389653 bytes, checksum: 1d72c50a26a9d9bcd3d2efcd5e1c7db2 (MD5)
license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-10-20T12:33:35Z (GMT) No. of bitstreams: 2
arquivototal.pdf: 2389653 bytes, checksum: 1d72c50a26a9d9bcd3d2efcd5e1c7db2 (MD5)
license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5) / Made available in DSpace on 2015-10-20T12:33:35Z (GMT). No. of bitstreams: 2
arquivototal.pdf: 2389653 bytes, checksum: 1d72c50a26a9d9bcd3d2efcd5e1c7db2 (MD5)
license_rdf: 22190 bytes, checksum: 19e8a2b57ef43c09f4d7071d2153c97d (MD5)
Previous issue date: 2014-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we will see theories and problems of linear recurrences. We start
with recurrences of rst and second order, some applications and then we see some
generalizations to higher order. We also studied operators and generators functions
to represent recursion and applications of the Arithmetic recurrences. / Nesta dissertação, veremos teorias e problemas de recorrências lineares. Come-
çamos com recorrências de primeira e segunda ordem, algumas aplicações e depois
vemos algumas generalizações para ordem superior. Estudamos também operadores
e funções geradoras para representar as recursões, bem como aplicações das recorr
ências à Aritmética.
|
5 |
Matemática discreta: tópicos de recorrências lineares e suas aplicaçõesCastro, Fabiano José de 27 May 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:22:32Z
No. of bitstreams: 1
arquivototal.pdf: 1866226 bytes, checksum: e3b8717f65b0ca3de6fc9c38cc41f7e2 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-08-30T11:44:43Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 1866226 bytes, checksum: e3b8717f65b0ca3de6fc9c38cc41f7e2 (MD5) / Made available in DSpace on 2017-08-30T11:44:43Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1866226 bytes, checksum: e3b8717f65b0ca3de6fc9c38cc41f7e2 (MD5)
Previous issue date: 2016-05-27 / I show this thesis linear recurrences starting with a brief historical review of the
main authors of some problems of linear recurrences. Analyze elementary sequences,
positional formulas, recursive methods, arithmetic and geometric progressions.
Later, I will distinguish what are relations of relapses and recurrences following
equations with the explanation of the solution of a recurrence, exposed in some instances
and also the rst recurrence settings and second orders with their ratings.
Soon after I'll discuss brie y the respect of some types of third-order recurrences and
also see some generalizations to higher order. Treat, nishing this work, applications
of recurrences using the foundations mentioned above and problems involving
combinatorial. / Mostrarei nesta dissertação as recorrências lineares começando com um breve
comentário histórico sobre os principais autores de alguns problemas de recorrências
lineares. Analisarei sequências elementares, fórmulas posicionais, métodos recursivos,
progressões aritméticas e geométricas. Posteriormente, diferenciarei o que são
relações de recorrências e equações de recorrências seguindo com a explicação da
solução de uma recorrência, exposta em alguns exemplos e também as de nições de
recorrências de primeira e segunda ordens com suas classi cações. Logo após discorrerei,
brevemente, à respeito de alguns tipos de recorrências de terceira ordem e
veremos também algumas generalizações para ordem superior. Tratarei, nalizando
neste trabalho, aplicações das recorrências utilizando as fundamentações referidas
anteriormente e problemas envolvendo combinatória.
|
6 |
Efeito stickiness em sistemas conservativos: uma abordagem estatística / Stickiness effect in conservative systems: a statistical approachesSilva, Rafael Marques da 11 March 2015 (has links)
Made available in DSpace on 2016-12-12T20:15:52Z (GMT). No. of bitstreams: 1
Rafael Marques.pdf: 14630401 bytes, checksum: 352c48d8c01e0db8ba6b41f5e8317ec8 (MD5)
Previous issue date: 2015-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main subject developed in this dissertation is the characterization of the dynamics of high-dimensional conservative systems using different statistical approaches. Looking at the conservative system phase-space, we can find chaotic and regular regions that are characterized by a random distribution of points and periodic structures formed by closed orbits, respectively. The nonlinearity parameter has a fundamental hole to the occurrence of chaotic trajectories that can get stuck for a finite time on the vicinity of regular regions. This phenomenon is known as stickiness effect and can be identified using different tools as the spectrum of finite time Lyapunov exponents or the recurrence time statistics (RTS), e.g. Throughout this dissertation, we propose to characterize this effect using such approaches and also apply a new methodology which uses the time series of the spectrum of finite time Lyapunov exponents to separate the dynamics in different regimes of motion. For this purpose, we study two conservative systems that are derived from standard map, a symplectic map extensively used to investigate the transition from regular to chaotic dynamic. The first system consists in a chain of coupled standard maps that originates a 2N-dimensional system, where N is the number of coupled maps. Using this system, from the definition of regimes of motion, we obtained the cumulative distribution of the consecutive time that the trajectory spends in a particular regime, which reproduces with a good precision the results obtained when using the RTS. The second system studied was the Modified Standard Map, which is obtained adding an action variable to the standard map. The coupling with an extra dimension allows the penetration of the regular structures by the trajectories, what was forbidden for the two-dimensional case. The application of the method of separation of regimes in this system enables a more detailed analysis of the stickiness effect, showing that only the trajectories located near the regular structures have Local Lyapunov exponents about zero. Thus, the development of this research contributes to a better understanding of the stickiness effect in high-dimensional conservative systems. / O tema principal desenvolvido nesta dissertação de Mestrado está relacionado com o estudo da dinâmica de sistemas conservativos, utilizando diferentes abordagens estatísticas. Ao analisarmos o espaço de fases de um sistema dinâmico pertencente a esta classe, podemos encontrar regiões caóticas e regulares que são caracterizadas pela distribuição aleatória de pontos e por estruturas periódicas formadas por órbitas fechadas, respectivamente. O parâmetro de não-linearidade tem um papel fundamental na existência de trajetórias caóticas que podem ser aprisionadas por um tempo finito nas proximidades das regiões regulares. Este fenômeno é conhecido como efeito stickiness, e pode ser identificado através da utilização de diferentes abordagens como, por exemplo, o espectro de Lyapunov calculado a tempo finito ou a estatística dos tempos de recorrência de Poincaré (ETR). No decorrer desta dissertação, propomos caracterizar o efeito stickiness utilizando tais abordagens, além de aplicar uma nova metodologia que consiste em analisar séries temporais do espectro de expoentes de Lyapunov afim de definir diferentes regimes de movimento. Para isso, estudamos dois sistemas conservativos multidimensionais derivados do mapa padrão, um mapa simplético muito utilizado para a investigação da transição da dinâmica regular para caótica. O primeiro deles consiste em uma rede de mapas padrão acoplados que dá origem a um sistema de 2N-dimensões, sendo N o número de mapas acoplados. Utilizando este sistema, a partir da definição de regimes de movimento, foi possível determinar a distribuição cumulativa do tempo consecutivo que a trajetória permanece em um determinado regime, sendo que os resultados obtidos por meio da análise desta quantidade podem reproduzir de forma satisfatória aqueles obtidos quando utilizamos a ETR. O segundo sistema estudado foi o Mapa Padrão Modificado (MPM), resultante do acoplamento entre uma variável ação extra e o mapa padrão tradicional. O acoplamento com uma dimensão extra permite que trajetórias penetrem nas regiões de regularidade, o que antes era proibido para o caso bidimensional. A aplicação da técnica de separação de regimes neste sistema permite uma análise mais detalhada do efeito stickiness, mostrando que apenas trajetórias que se encontram em torno das estruturas de regularidade possuem expoentes de Lyapunov Locais com valores próximos a zero. Desta forma, o desenvolvimento desta pesquisa contribui para o melhor entendimento do efeito stickiness em sistemas
conservativos de alta dimensionalidade.
|
7 |
O estudo de Induções e Recorrências - uma abordagem para o Ensino MédioCosta, Antonio Carlos de Lima 26 February 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-30T11:36:15Z
No. of bitstreams: 1
arquivo total.pdf: 1989591 bytes, checksum: c1b3f2740144367fd7ef458d0603ba20 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2016-03-30T15:42:56Z (GMT) No. of bitstreams: 1
arquivo total.pdf: 1989591 bytes, checksum: c1b3f2740144367fd7ef458d0603ba20 (MD5) / Made available in DSpace on 2016-03-30T15:42:56Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1989591 bytes, checksum: c1b3f2740144367fd7ef458d0603ba20 (MD5)
Previous issue date: 2015-02-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a research on the Induction Principles and the Recurrences,
its history, mathematical concepts and applications used. Were developed some
statements of Induction Principle and the Recurrences using some basic concepts
from Number Theory, Combinatorics, Geometry and Set Theory that can be explored
in high school. Was submitted a few activities that can be applied in the
classroom of the high school in the development of mathematical concepts such as
Arithmetic Progression, Geometric Progression, Geometry, Combinatorial Analysis
and Numeric Sets among other topics. / Este trabalho apresenta uma pesquisa sobre os Princípios de indução e Recorrências,
sua história, conceitos matemáticos utilizados e aplicações. Foram desenvolvidas
algumas demonstrações do Princípio de indução e Recorrências, utilizando-se
alguns conceitos básicos de Teoria dos Números, Análise Combinatória, Teoria dos
Conjuntos e Geometria que podem ser explorados no Ensino Médio. Foram apresentadas
algumas atividades que podem ser aplicadas em sala de aula do Ensino
Médio no desenvolvimento de conceitos matemáticos como Progressão Aritmética,
Progressão Geométrica, Geometria, Combinação e Conjuntos Numéricos entre outros
temas.
|
8 |
Topics in Stochastic and Biological ModelingWhitman, John A. 20 October 2021 (has links)
No description available.
|
9 |
Chaos dynamique dans le problème à trois corps restreint / Dynamical chaos in the restricted three body problemRollin, Guillaume 02 November 2015 (has links)
Capture-évolution-éjection de particules par des systèmes binaires (étoile-planète, étoile binaire, étoile-trou noir supermassif, trou noir binaire, ...). Dans une première partie, en utilisant une généralisation de l'application de Kepler, nous décrivons, au travers du cas de 1P/Halley, la dynamique chaotique des comètes dans le système solaire. Le système binaire, alors considéré, est composé du Soleil et de Jupiter. L'application symplectique utilisée permet de rendre compte des différentes caractéristiques de la dynamique : trajectoires chaotiques, îlots invariants de KAM associés aux résonances avec le mouvement orbital de Jupiter,... Nous avons déterminé de façon exacte et semi-analytique l'énergie échangée (fonction kick) entre le système solaire et la comète de Halley à chaque passage au périhélie. Cette fonction kick est la somme des contributions des problèmes à trois corps Soleil-planète-comète associés aux 8 planètes du système solaire. Nous avons montré que chacune de ces contributions peut être décomposée en un terme keplerien associé au potentiel gravitationnel de la planète et un terme dipolaire dû au mouvement du soleil autour du centre de masse du système solaire. Dans une deuxième partie, nous avons utilisé la généralisation de l'application de Kepler pour étudier la capture de particules de matière noire au sein des systèmes binaires. La section efficace de capture a été calculée et montre que la capture à longue portée est bien plus efficace que la capture due aux rencontres proches. Nous montrons également l'importance de la vitesse de rotation du système binaire dans le processus de capture. Notamment, un système binaire en rotation ultrarapide accumulera en son sein une densité de matière jusqu'à 10^4 fois celle du flot de matière le traversant. Dans la dernière partie, en intégrant les équations du mouvement du problème à trois corps restreint plan, nous avons étudié l'éjection des particules capturées par un système binaire. Dans le cas d'un système binaire dont les deux corps sont de masses comparables, alors que la majorité des particules sont éjectées immédiatement, nous montrons, sur les sections de Poincaré, que la trace des particules restant indéfiniment aux abords du système binaire forme une structure fractale caractéristique d'un répulseur étrange associé à un système chaotique ouvert. Cette structure fractale, également présente dans l'espace réel, a une forme de spirale à deux bras partageant des similitudes avec les structures spiralées des galaxies comme la nôtre. / This work is devoted to the study of the restricted 3-body problem and particularly to the capture-evolution-ejection process of particles by binary systems (star-planet, binary star, star-supermassive black hole, binary black hole, ...). First, using a generalized Kepler map, we describe, through the case of 1P/Halley, the chaotic dynamics of comets in the Solar System. The here considered binary system is the couple Sun-Jupiter. The symplectic application we use allows us to depict the main characteristics of the dynamics: chaotic trajectories, KAM islands associated to resonances with Jupiter orbital motion, ... We determine exactly and semi-analytically the exchange of energy (kick function) between the Solar System and 1P/Halley at its passage at perihelion. This kick function is the sum of the contributions of 3-body problems Sun-planet-comet associated to the eight planets. We show that each one of these contributions can be split in a keplerian term associated to the planet gravitational potential and a dipolar term due to the Sun movement around Solar System center of mass. We also use the generalized Kepler map to study the capture of dark matter particles by binary systems. We derive the capture cross section showing that long range capture is far more efficient than close encounter induced capture. We show the importance of the rotation velocity of the binary in the capture process. Particularly, a binary system with an ultrafast rotation velocity accumulates a density of captured matter up to 10^4 times the density of the incoming flow of matter. Finally, by direct integration of the planar restricted 3-body problem equations of motion, we study the ejection of particles initially captured by a binary system. In the case of a binary with two components of comparable masses, although almost all the particles are immediately ejected, we show, on Poincaré sections, that the trace of remaining particles in the vicinity of the binary form a fractal structure associated to a strange repeller associated to chaotic open systems. This fractal structure, also present in real space, has a shape of two arm spiral sharing similarities with spiral structures observed in galaxies such as the Milky Way.
|
Page generated in 0.0714 seconds