Spelling suggestions: "subject:"reducedorder modelling"" "subject:"reducedrder modelling""
11 |
Réduction de modèle et contrôle d'écoulements / Reduced-order modelling and flow controlTissot, Gilles 02 October 2014 (has links)
Le contrôle d'écoulements turbulents est un enjeu majeur en aérodynamique. Cependant, la présence d'un grand nombre de degrés de libertés et d'une dynamique complexe rend délicat la modélisation dynamique de ces écoulements qui est pourtant nécessaire à la conception d'un contrôle efficace. Au cours de cette thèse, différentes directions ont été suivies afin de développer des modèles réduits dans des configurations réalistes d'écoulements et d'utiliser ces modèles pour le contrôle.Premièrement, la décomposition en modes dynamiques (DMD), et certaines de ses variantes, ont été exploitées en tant que base réduite afin d'extraire au mieux le comportement dynamique de l'écoulement. Par la suite, nous nous sommes intéressés à l'assimilation de données 4D-Var qui permet de combiner des informations inhomogènes provenant d'un modèle dynamique, d'observations et de connaissances a priori du système. Nous avons ainsi élaboré des modèles réduits POD et DMD d'un écoulement turbulent autour d'un cylindre à partir de données expérimentales PIV. Finalement, nous avons considéré le contrôle d'écoulement dans un contexte d'interaction fluide/structure. Après avoir montré que les mouvements de solides immergés dans le fluide pouvaient être représentés comme une contrainte supplémentaire dans le modèle réduit, nous avons stabilisé un écoulement de sillage de cylindre par oscillation verticale. / Control of turbulent flows is still today a challenge in aerodynamics. Indeed, the presence of a high number of active degrees of freedom and of a complex dynamics leads to the need of strong modelling efforts for an efficient control design. During this PhD, various directions have been followed in order to develop reduced-order models of flows in realistic situations and to use it for control. First, dynamic mode decomposition (DMD), and some of its variants, have been exploited as reduced basis for extracting at best the dynamical behaviour of the flow. Thereafter, we were interested in 4D-variational data assimilation which combines inhomogeneous informations coming from a dynamical model, observations and an a priori knowledge of the system. POD and DMD reduced-order models of a turbulent cylinder wake flow have been successfully derived using data assimilation of PIV measurements. Finally, we considered flow control in a fluid-structure interaction context. After showing that the immersed body motion can be represented as an additional constraint in the reduced-order model, we stabilized a cylinder wake flow by vertical oscillations.
|
12 |
Spark induced flow in quiescent airBhavini Singh (10586768) 07 May 2021 (has links)
<p>Nanosecond spark plasma actuators provide an opportunity to
reduce pollutants by promoting efficient combustion in engines or provide
targeted, tunable, flow control over vehicles, due to their ability to
influence flow and combustion through multiple mechanisms. The plasma actuators
can be physically unobtrusive, can be turned on and off and their low duty
cycle, large bandwidth, and light weight make them more appealing than other
control approaches. One method by which these plasma actuators interact with
the environment is by inducing a complex local flow field and in order, to
design scalable, high frequency actuators effectively, it is necessary to first
understand the flow induced by a single spark discharge. Most experimental
analysis on the flow induced by spark discharges has been restricted to qualitative
descriptions of the flow field, primarily due to the difficulties associated
with measuring such a transient and highly complex flow with sufficient
spatiotemporal resolution. Quantitative, experimental characterization of the
flow induced by a spark discharge remains lacking. </p><p> </p><p>A spark discharge produces a shock wave and a hot gas kernel
with a complex flow field following the shock. In this work, combined experimental
and theoretical characterization of the spark induced flow is performed through
a series of high spatiotemporal resolution measurements of the density and velocity
fields and reduced-order modeling. The work investigates the mechanisms driving
the cooling and vorticity generation in spark induced flow and the 3D nature of
the flow field. Planar (2D-3C) and volumetric (3D-3C) velocity measurements are
taken using stereoscopic particle image velocimetry (SPIV) and tomographic PIV,
respectively. Density measurements are taken using background oriented
schlieren (BOS) and high speed schlieren imaging is used to capture the shock
wave induced by the spark.</p><p> </p><p>The work shows that spark plasma discharges induce vortex
rings whose vorticity is likely generated due to baroclinic torque arising from
the non-uniform strength of the induced shock wave. The hot gas kernel cools in
two stages: an initially fast cooling regime, followed by a slower cooling
process. Reduced order analytical models are developed to describe the cooling
observed in the fast regime and the role of the vortex rings in the entrainment
of cold ambient gas and the cooling of the hot gas kernel. The results show
that the vortex rings entrain ambient gas and drive cooling in the fast, convective
regime, cooling approximately 50% of the hot gas within the first millisecond
of the induced flow. An increase in the electrical energy deposited in the
spark gap increases the shock strength and curvature and increases the vortex
ring strength, thereby increasing the cooling rate and expansion of the hot gas
kernel. The volumetric velocity measurements capture one of the two induced vortex
rings and provide a framework for the improvements needed in future tomographic
PIV experiments of the spark induced flow field, necessary in assessing the 3D
nature of the induced vortex rings.</p><p> </p><p>
The results of this work provide the first set of
quantitative, experimental data on flow induced by nanosecond spark discharges
that can be used for validation of computational fluid dynamics (CFD) simulations.
The results demonstrate that spark plasmas induce vortex ring-driven mixing
flows and the results on mixing and cooling of the hot gas kernel can be
extended to any passive scalars present in the flow field as well as inform
pulsation frequencies and actuator designs for flow and combustion control. The
results from the reduced order modeling can inform future studies and
applications of nanosecond spark discharges and can be extended to a variety of
other types of plasma discharges like laser sparks, long duration sparks and
surface discharges with similar induced flow fields.<br></p>
|
13 |
Methods and Tools for Parametric Modeling and Simulation of Microsystems based on Finite Element Methods and Order Reduction TechnologiesKolchuzhin, Vladimir 27 May 2010 (has links) (PDF)
In der vorliegenden Arbeit wird die Entwicklung eines effizienten Verfahrens zur parametrischen Finite Elemente Simulation von Mikrosystemen und zum Export dieser Modelle in Elektronik- und Systemsimulationswerkzeuge vorgestellt.
Parametrische FE-Modelle beschreiben den Einfluss von geometrischen Abmessungen, Schwankungen von Materialeigenschaften und veränderten Umgebungsbedingungen auf das Funktionsverhalten von Sensoren und Aktuatoren. Parametrische FE-Modelle werden für die Auswahl geeigneter Formelemente und deren Dimensionierung während des Entwurfsprozesses in der Mikrosystemtechnik benötigt. Weiterhin ermöglichen parametrische Modelle Sensitivitätsanalysen zur Bewertung des Einflusses von Toleranzen und Prozessschwankungen auf die Qualität von Fertigungsprozessen. In Gegensatz zu üblichen Sample- und Fitverfahren wird in dieser Arbeit eine Methode entwickelt, welche die Taylorkoeffizienten höherer Ordnung zur Beschreibung des Einflusses von Designparametern direkt aus der Finite-Elemente- Formulierung, durch Ableitungen der Systemmatrizen, ermittelt.
Durch Ordnungsreduktionsverfahren werden die parametrischen FE-Modelle in verschiedene Beschreibungssprachen für einen nachfolgenden Elektronik- und Schaltungsentwurf überführt. Dadurch wird es möglich, neben dem Sensor- und Aktuatorentwurf auch das Zusammenwirken von Mikrosystemen mit elektronischen Schaltungen in einer einheitlichen Simulationsumgebung zu analysieren und zu optimieren. / The thesis deals with advanced parametric modeling technologies based on differentiation of the finite element equations which account for parameter variations in a single FE run. The key idea of the new approach is to compute not only the governing system matrices of the FE problem but also high order partial derivatives with regard to design parameters by means of automatic differentiation. As result, Taylor vectors of the system’s response can be expanded in the vicinity of the initial position capturing dimensions and physical parameter. A novel approaches for the parametric MEMS simulation have been investigated for mechanical, electrostatic and fluidic domains in order to improve the computational efficiency.
Objective of reduced order modeling is to construct a simplified model which approximates the original system with reasonable accuracy for system level design of MEMS. The modal superposition technique is most suitable for system with flexible mechanical components because the deformation state of any flexible system can be accurately described by a linear combination of its lowest eigenvectors.
The developed simulation approach using parametric FE analyses to extract basis functions have been applied for parametric reduced order modeling. The successful implementation of a derivatives based technique for parameterization of macromodel by the example of microbeam and for exporting this macromodel into MATLAB/Similink to simulate dynamical behavior has been reported.
|
14 |
Methods and Tools for Parametric Modeling and Simulation of Microsystems based on Finite Element Methods and Order Reduction TechnologiesKolchuzhin, Vladimir 12 May 2010 (has links)
In der vorliegenden Arbeit wird die Entwicklung eines effizienten Verfahrens zur parametrischen Finite Elemente Simulation von Mikrosystemen und zum Export dieser Modelle in Elektronik- und Systemsimulationswerkzeuge vorgestellt.
Parametrische FE-Modelle beschreiben den Einfluss von geometrischen Abmessungen, Schwankungen von Materialeigenschaften und veränderten Umgebungsbedingungen auf das Funktionsverhalten von Sensoren und Aktuatoren. Parametrische FE-Modelle werden für die Auswahl geeigneter Formelemente und deren Dimensionierung während des Entwurfsprozesses in der Mikrosystemtechnik benötigt. Weiterhin ermöglichen parametrische Modelle Sensitivitätsanalysen zur Bewertung des Einflusses von Toleranzen und Prozessschwankungen auf die Qualität von Fertigungsprozessen. In Gegensatz zu üblichen Sample- und Fitverfahren wird in dieser Arbeit eine Methode entwickelt, welche die Taylorkoeffizienten höherer Ordnung zur Beschreibung des Einflusses von Designparametern direkt aus der Finite-Elemente- Formulierung, durch Ableitungen der Systemmatrizen, ermittelt.
Durch Ordnungsreduktionsverfahren werden die parametrischen FE-Modelle in verschiedene Beschreibungssprachen für einen nachfolgenden Elektronik- und Schaltungsentwurf überführt. Dadurch wird es möglich, neben dem Sensor- und Aktuatorentwurf auch das Zusammenwirken von Mikrosystemen mit elektronischen Schaltungen in einer einheitlichen Simulationsumgebung zu analysieren und zu optimieren. / The thesis deals with advanced parametric modeling technologies based on differentiation of the finite element equations which account for parameter variations in a single FE run. The key idea of the new approach is to compute not only the governing system matrices of the FE problem but also high order partial derivatives with regard to design parameters by means of automatic differentiation. As result, Taylor vectors of the system’s response can be expanded in the vicinity of the initial position capturing dimensions and physical parameter. A novel approaches for the parametric MEMS simulation have been investigated for mechanical, electrostatic and fluidic domains in order to improve the computational efficiency.
Objective of reduced order modeling is to construct a simplified model which approximates the original system with reasonable accuracy for system level design of MEMS. The modal superposition technique is most suitable for system with flexible mechanical components because the deformation state of any flexible system can be accurately described by a linear combination of its lowest eigenvectors.
The developed simulation approach using parametric FE analyses to extract basis functions have been applied for parametric reduced order modeling. The successful implementation of a derivatives based technique for parameterization of macromodel by the example of microbeam and for exporting this macromodel into MATLAB/Similink to simulate dynamical behavior has been reported.
|
Page generated in 0.124 seconds