• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 49
  • 25
  • 17
  • 15
  • 13
  • 12
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of analyticity requirements on Regge singularities.

Haddad, Lewis Marlin. January 1970 (has links)
No description available.
2

Regge pole analysis of pseudoscalar mesonbaryon inelastic scattering reactions

Sarma, Kuruganti Veera Lakshmana, January 1968 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1968. / Vita. Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
3

Regge poles in boson-fermion scattering

Freedman, Daniel Z. January 1964 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1964. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Bibliography: leaves 131-135.
4

A study of analyticity requirements on Regge singularities.

Haddad, Lewis Marlin. January 1970 (has links)
No description available.
5

Regge Calculus as a Numerical Approach to General Relativity

Khavari, Parandis 17 January 2012 (has links)
A (3+1)-evolutionary method in the framework of Regge Calculus, known as "Parallelisable Implicit Evolutionary Scheme", is analysed and revised so that it accounts for causality. Furthermore, the ambiguities associated with the notion of time in this evolutionary scheme are addressed and a solution to resolving such ambiguities is presented. The revised algorithm is then numerically tested and shown to produce the desirable results and indeed to resolve a problem previously faced upon implementing this scheme. An important issue that has been overlooked in "Parallelisable Implicit Evolutionary Scheme" was the restrictions on the choice of edge lengths used to build the space-time lattice as it evolves in time. It is essential to know what inequalities must hold between the edges of a 4-dimensional simplex, used to construct a space-time, so that the geometry inside the simplex is Minkowskian. The only known inequality on the Minkowski plane is the "Reverse Triangle Inequality" which holds between the edges of a triangle constructed only from space-like edges. However, a triangle, on the Minkowski plane, can be built from a combination of time-like, space-like or null edges. Part of this thesis is concerned with deriving a number of inequalities that must hold between the edges of mixed triangles. Finally, the Raychaudhuri equation is considered from the point of view of Regge Calculus. The Raychaudhuri equation plays an important role in many areas of relativistic Physics and Astrophysics, most importantly in the proof of singularity theorems. An analogue to the Raychaudhuri equation in the framework of Regge Calculus is derived. Both (2+1)-dimensional and (3+1)-dimensional cases are considered and analogues for average expansion and shear scalar are found.
6

Nucleon isobar production.

Rice, John Lawrence. January 1967 (has links)
No description available.
7

Regge Calculus as a Numerical Approach to General Relativity

Khavari, Parandis 17 January 2012 (has links)
A (3+1)-evolutionary method in the framework of Regge Calculus, known as "Parallelisable Implicit Evolutionary Scheme", is analysed and revised so that it accounts for causality. Furthermore, the ambiguities associated with the notion of time in this evolutionary scheme are addressed and a solution to resolving such ambiguities is presented. The revised algorithm is then numerically tested and shown to produce the desirable results and indeed to resolve a problem previously faced upon implementing this scheme. An important issue that has been overlooked in "Parallelisable Implicit Evolutionary Scheme" was the restrictions on the choice of edge lengths used to build the space-time lattice as it evolves in time. It is essential to know what inequalities must hold between the edges of a 4-dimensional simplex, used to construct a space-time, so that the geometry inside the simplex is Minkowskian. The only known inequality on the Minkowski plane is the "Reverse Triangle Inequality" which holds between the edges of a triangle constructed only from space-like edges. However, a triangle, on the Minkowski plane, can be built from a combination of time-like, space-like or null edges. Part of this thesis is concerned with deriving a number of inequalities that must hold between the edges of mixed triangles. Finally, the Raychaudhuri equation is considered from the point of view of Regge Calculus. The Raychaudhuri equation plays an important role in many areas of relativistic Physics and Astrophysics, most importantly in the proof of singularity theorems. An analogue to the Raychaudhuri equation in the framework of Regge Calculus is derived. Both (2+1)-dimensional and (3+1)-dimensional cases are considered and analogues for average expansion and shear scalar are found.
8

The derivation of an effective string theory from a field theory containing vortex solutions, and its application to Regge trajectories /

Steinke, Ronald, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 92-96).
9

Nucleon isobar production.

Rice, John Lawrence. January 1967 (has links)
No description available.
10

Non-Rigid Motion and Regge Calculus

Jasinschi, Rado, Yuille, Alan 01 November 1987 (has links)
We study the problem of recovering the structure from motion of figures which are allowed to perform a controlled non-rigid motion. We use Regge Calculus to approximate a general surface by a net of triangles. The non- rigid flexing motion we deal with corresponds to keeping the triangles rigid and allowing bending only at the joins between triangles. We show that depth information can be obtained by using a modified version of the Incremental Rigidity Scheme devised by Ullman (1984). We modify this scheme to allow for flexing motion and call our version the Incremental Semirigidity Scheme.

Page generated in 0.056 seconds