• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rehydroxylation of fired-clay ceramics: factors affecting early-stage mass gain in dating experiments

Wilson, M.A., Clelland, Sarah-Jane, Carter, M.A., Ince, C., Hall, C., Hamilton, A., Batt, Catherine M. January 2014 (has links)
No / To obtain accurate results in the RHX dating of ceramics, it is essential that the RHX measurements are continued until the rate of mass gain is constant with (time)1/4. In this paper, we discuss how the initial stages of mass gain are affected by the specific surface area (SSA) of the ceramic material. The paper provides guidance on experimental protocols to avoid dating results being distorted by relatively early-time mass gain data.
2

A study of (time)1/4 rehydroxylation kinetics in fired kaolinite

Mesbah, Hesham Elsayed Mohamed January 2011 (has links)
Accurate prediction of long-term moisture expansion in fired clay ceramics requires finding a relationship between the reactivity of a ceramic material with moisture and time. Recently a (time)1/4 law has been proposed which provides a precise relationship between moisture expansion and mass gain in fired clay ceramics and time. However, mass gain studies rather than expansive strain studies provide a more accurate and fundamental measure of the reactivity of fired clay ceramics with moisture. The possibility of using the (time)1/4 law to describe rate of mass gain and consequently to predict moisture expansion in fired clay ceramics with time requires study of the effect of chemical composition and firing temperature on the linear dependence of mass gain on (time)1/4. Pure kaolinite as well as kaolinite mixed with controlled additions of alkali and alkaline-earth metals were employed in this study. These materials were fired at temperatures between 800°C and 1200°C. Mass gain due to the chemical combination of the fired materials with moisture was measured using a recording microbalance under tightly controlled environmental conditions of temperature and relative humidity. The mass gain results show that the (time)1/4 law can be used to obtain an accurate linear relationship between long-term mass gain and time at almost all firing temperatures and at all different compositions. The presence of alkali metals was found to strongly affect the chemical combination of fired clay ceramics with moisture and hence affect the rate of mass gain. On the other hand, alkaline earth metals were found to produce similar reaction kinetics to kaolinite alone. BET surface area and X-ray diffraction results confirm that there is a correlation between the reactivity with moisture and both the specific surface area and crystallinity of fired clay ceramics.
3

RHX Dating: measurement of the Activation Energy of Rehydroxylation for Fired-Clay Ceramics

Clelland, Sarah-Jane, Wilson, M.A., Carter, M.A., Batt, Catherine M. 21 March 2015 (has links)
No / In rehydroxylation (RHX) dating, the activation energy of the rehydroxylation reaction is required first in the estimate of a material's effective lifetime temperature (ELT), and second to correct the RHX rate constant obtained at a given measurement temperature to that at the ELT. Measurement of the activation energy is thus integral to the RHX methodology. In this paper, we report a temperature-step method for the measurement of activation energy and develop fully the underlying theoretical basis. In contrast to obtaining the activation energy from a series of separate experiments (each of which requires the sample to be dehydroxylated prior to measuring the RHX rate constant), the temperature-step method not only requires a single dehydroxylation at 500°C but also eliminates repeated acquisition of Stage I data, which are not required for dating purposes. Since the first temperature step is set to correspond to the temperature at which a dating determination is carried out, the measurement of rate constants at higher temperatures simply becomes an extension of dating. Consequently, the logistics of obtaining the activation energy of rehydroxylation are greatly simplified.

Page generated in 0.1026 seconds