Spelling suggestions: "subject:"ignition"" "subject:"foreignization""
1 |
Large eddy simulation of syngas-air diffusion flames with artificial neural networks based chemical kineticsSanyal, Anuradha 07 September 2011 (has links)
In the present study syngas-air diffusion flames are simulated using LES with artificial neural network (ANN) based chemical kinetics modeling and the results are compared with previous direct numerical simulation (DNS) study, which exhibits significant extinction-reignition and forms a challenging problem for ANN. The objective is to obtain speed-up in chemistry computation while still having the accuracy of stiff ODE solver. The ANN methodology is used in two ways: 1) to compute the instantaneous source term in the linear eddy mixing (LEM) subgrid combustion model used within LES framework, i.e., laminar-ANN used within LEMLES framework (LANN-LEMLES), and 2) to compute the filtered source terms directly within the LES framework, i.e., turbulent-ANN used within LES (TANN-LES), which further dicreases the computational speed. A thermo-chemical database is generated from a standalone one-dimensional LEM simulation and used to train the LANN for species source terms on grid-size of Kolmogorov scale. To train the TANN coefficients the thermo-chemical database from the standalone LEM simulation is filtered over the LES grid-size and then used for training. To evaluate the performance of the TANN methodology, the low Re test case is simulated with direct integration for chemical kinetics modeling in LEM subgrid combustion model within the LES framework (DI-LEMLES), LANN-LEMLES andTANN-LES. The TANN is generated for a low range of Ret in order to simulate the specific test case. The conditional statistics and pdfs of key scalars and the temporal evolution of the temperature and scalar dissipation rates are compared with the data extracted from DNS. Results show that the TANN-LES methodology can capture the extinction-reignition physics with reasonable accuracy compared to the DNS. Another TANN is generated for a high range of Ret expected to simulate test cases with different Re and a range of grid resolutions. The flame structure and the scalar dissipation rate statistics are analyzed to investigate success of the same TANN in simulating a range of test cases. Results show that the TANN-LES using TANN generated fora large range of Ret is capable of capturing the extinction-reignition physics with a very little loss of accuracy compared to the TANN-LES using TANN generated for the specific test case. The speed-up obtained by TANN-LES is significant compared to DI-LEMLES and LANN-LEMLES.
|
2 |
Dignostika zhášecího pochodu u stejnosměrného stykače / Switching arc diagnostics in DC contactorPíška, Jakub January 2020 (has links)
Cílem této diplomové práce bylo provést diagnostiku vysokonapěťového stejnosměrného stykače se zaměřením na zpětnou komutaci a lepení oblouku, navrhnout a ověřit úpravy, které odstraní tyto negativní jevy. Měření obloukového napětí, tlaku a pomocí rychlokamery byly použity při diagnostice těchto jevů. Změny na arcrunnerech a jhu magnetického obvodu byly využity při jejich odstraňování. Úpravy na arcrunneru zmenšily skokové nárusty délky oblouku a úpravy na jhu navýšily sílu na oblouk mezi rozevírajícími se kontakty. Navrhnuté změny na stykači snížily časovou ztrátu v důsledku zpětné komutace, a tak zkrátily čas přenosu oblouku.
|
3 |
Investigation of circuit breaker switching transients for shunt reactors and shunt capacitorsRamli, Mohd Shamir January 2008 (has links)
Switching of shunt reactors and capacitor banks is known to cause a very high rate of rise of transient recovery voltage across the circuit breaker contacts. With improvements in circuit breaker technology, modern SF6 puffer circuits have been designed with less interrupter per pole than previous generations of SF6 circuit breakers. This has caused modern circuit breakers to operate with higher voltage stress in the dielectric recovery region after current interruption. Catastrophic failures of modern SF6 circuit breakers have been reported during shunt reactor and capacitor bank de-energisation. In those cases, evidence of cumulative re-strikes has been found to be the main cause of interrupter failure.
Monitoring of voltage waveforms during switching would provide information about the magnitude and frequency of small re-ignitions and re-strikes. However, measuring waveforms at a moderately high frequency require plant outages to connect equipment. In recent years, there have been increasing interests in using RF measurements in condition monitoring of switchgear. The RF measurement technique used for measuring circuit breaker inter-pole switching time during capacitor bank closing is of particular interest.
In this thesis, research has been carried out to investigate switching transients produced during circuit breaker switching capacitor banks and shunt reactors using a non-intrusive measurement technique. The proposed technique measures the high frequency and low frequency voltage waveforms during switching operations without the need of an outage. The principles of this measurement technique are discussed and field measurements were carried out at shunt rector and capacitor bank installation in two 275 kV air insulated substations. Results of the measurements are presented and discussed in this thesis.
The proposed technique shows that it is relatively easy to monitor circuit breaker switching transients and useful information on switching instances can be extracted from the measured waveforms. Further research works are discussed to realise the full potential of the measuring technique.
|
Page generated in 0.0544 seconds