• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FRP confined reinforced concrete circular cross section seismic applications a thesis /

Lyon, Jeffrey Gordon. Chadwell, Charles Brian. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Title from PDF title page; viewed on Sept. 16, 2009. "August 2009." "In partial fulfillment of the requirements for the degree [of] Master of Science in Civil and Environmental Engineering." "Presented to the faculty of California Polytechnic State University, San Luis Obispo." Major professor: Charles B. Chadwell, Ph.D. Includes bibliographical references (p. 67-71).
2

Seismic fragility estimates for reinforced concrete framed buildings

Ramamoorthy, Sathish Kumar, January 1900 (has links)
Thesis (Ph. D.)--Texas A&M University, 2006. / "Major Subject: Civil Engineering" Title from author supplied metadata (automated record created on Apr. 27, 2007.) Vita. Abstract. Includes bibliographical references.
3

Seismic performance of flexible concrete structures /

Feghali, Habib Labib, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 256-262). Available also in a digital version from Dissertation Abstracts.
4

Mevcut yapıların güçlendirilmesinde dış çelik konstrüksiyon perde uygulaması /

Görgülü, Avni Tarkan. Kaplan, Hasan. Ay, Zeki. January 2008 (has links) (PDF)
Tez (Doktora) - Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, 2008. / Kaynakça var.
5

Theoretical study of hybrid masonry : RC structure behaviour under lateral earthquake loading

Ouyang, Yi, 欧阳禕 January 2012 (has links)
A confined masonry (CM) wall consists of a masonry wall panel surrounded by reinforced concrete (RC) members on its perimeters. Low-rise CM structures are widely used in earthquake-risked (EQ-risked) rural or suburban areas all over the world. Most of these structures fail in shear pattern under lateral EQ loads, and some of them collapse under a severe or even a moderate EQ due to inappropriate design. On the other hand, buildings constructed of RC frames have much better performance in resisting EQs, since their RC members have larger dimensions and heavier reinforcing ratios than those in CM structures. Nonetheless, RC-frame buildings are normally too expensive for most inhabitants in less developed regions. In this study, as an improvement to the conventional CM buildings for EQ resistance and for the sake of post-EQ restoration, a hybrid masonry – RC (HMR) structure, whose working mechanism is different from that of a conventional CM structure, is proposed. The RC members (i.e. “tie beams” and “tie columns”), which function only as confinement in a CM building, will resist most of gravity load and part of lateral EQ load in an HMR structure, while the wall panels will take most of lateral EQ load and part of gravity load. This is achievable by slightly increasing the sizes and reinforcing ratios of RC members in HMR structures. Such buildings will not collapse in the absence of masonry wall panels because the gravity load bearing system is still intact. On the other hand, as the wall panels in the proposed HMR structure will absorb most of the energy induced by lateral EQ load, severe damages will be controlled within the wall panel region, so that only the wall panels need to be replaced instead of rebuilding the whole structure after the EQ event. To investigate the mechanical behaviours of masonry assemblages to be used in HMR structures, a series of experimental tests were conducted. Having established the relevant material properties for HMR structures, finite element (FE) simulation was performed to verify its work mechanism. Prior to applying the FE simulation to HMR structures, the FE technique was first applied to simulate the behaviours of two concrete-brick masonry panels under diagonal compression loading and a CM wall under cyclic lateral loading. The results show a good correlation between the experimental results and the simulated ones. This has validated the feasibility of using the FE software to study the proposed HMR structure. The theoretical simulation results show that in a properly designed HMR wall, depending on the masonry reinforcing details and the boundary conditions of simulated load cases, about 70% of the gravity load imposed on the RC beam will be transferred to the RC columns and more than 80% of the seismic energy (in terms of strain energy) will be absorbed by the masonry panel. Therefore, it is obvious that the proposed HMR structure is very feasible to replace the conventional CM structure in resisting EQ attacks with no risk of collapse. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
6

Achieving Operational Seismic Performance of RC Bridge Bents Retrofitted with Buckling-Restrained Braces

Bazáez Gallardo, Ramiro Andrés Gabriel 13 February 2017 (has links)
Typical reinforced concrete (RC) bridges built prior to 1970 were designed with minimum seismic consideration, leaving numerous bridges highly susceptible to damage following an earthquake. In order to improve the seismic behavior of substandard RC bridges, this study presents the seismic performance of reinforced concrete bridge bents retrofitted and repaired using Buckling-Restrained Braces (BRBs) while considering subduction zone earthquake demands. In order to reflect displacement demands from subduction ground motions, research studies were conducted to develop quasi-static loading protocols and then investigate their effect on structural bridge damage. Results suggested that subduction loading protocols may reduce the displacement ductility capacity of RC bridge columns and change their failure mode. The cyclic performance of reinforced concrete bridge bents retrofitted and repaired using BRBs was experimentally evaluated using large-scale specimens and the developed loading histories. Three BRB specimens were evaluated with the aim of assessing the influence of these components on the overall performance of the retrofitted and repaired bents. Additionally, subassemblage tests were conducted in an effort to study the response of these elements and to allow for refined nonlinear characterization in the analysis of the retrofitted and repaired systems. The results of the large-scale experiments and analytical studies successfully demonstrated the effectiveness of utilizing buckling-restrained braces for achieving high displacement ductility of the retrofitted and repaired structures, while also controlling the damage of the existing vulnerable reinforced concrete bent up to an operational performance level.

Page generated in 0.0766 seconds