• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temporal and Thermal Effects on Fluvial Erosion of Cohesive Streambank Soils

Akinola, Akinrotimi Idowu 17 August 2018 (has links)
In the United States, the annual cost of on-site soil erosion problems such as soil and nutrient losses, and off-site soil erosion problems such as sedimentation of lakes and river, loss of navigable waterways, flooding and water quality impairment, has been estimated at 44 billion USD (Pimentel, 1995; Telles, 2011). While eroding sediment sources can either be from land or from stream/river systems, the erosion from streambanks can be quite significant, reaching up to 80% of sediment leaving a watershed (Simon et al 2002; Simon and Rinaldi 2006). Despite many decades of research one the erosion of cohesive soils by flowing water (fluvial erosion), this significant aspect of environmental sustainability and engineering is still poorly understood. While past studies have given invaluable insight into fluvial erosion, this process is still poorly understood. Therefore, the objective of this dissertation was to examine the relationship between time and erosion resistance of remolded cohesive soils, and to quantify and model the effects soil and water temperature on the fluvial erosion of cohesive soils First, erosion tests were performed to investigate how soil erosion resistance develops over time using three natural soils and testing in a laboratory water channel. Results showed that the erosion rate of the soils decreased significantly over the time since the soils were wetted. This study indicates researchers need to report their sample preparation methods in detail, including the time between sample wetting and sample testing. Second, erosion tests were performed at multiple soil and water temperatures. Results showed that increases in water temperature led to increased erosion rates while increases in soil temperature resulted in decreased erosion rate. When soil and water temperatures were equal, erosion results were not significantly different. Results also showed a linear relationship between erosion rate and the difference between soil and water temperatures, indicating erosion resistance decreased as heat energy was added to the soil. Lastly, two common erosion models (the excess shear stress and the Wilson models) were evaluated, and were modified to account for soil and water temperature effects. Results showed that, compared to the original models, the modified models were better in predicting erosion rates. However, significant error between model predictions and measured erosion rates still existed. Overall, these results improve the current state of knowledge of how erosion resistance of remolded cohesive soils evolves with time, showing the importance of this factor in the design of cohesive erosion experiments. Also, the results show that by accounting for thermal effects on erosion rate, the usability of erosion models can be improved in their use for erosion predictions in soil and water conservation and engineering practice. / PHD / In the United States, the annual cost of on-site soil erosion problems such as soil and nutrient losses, and off-site soil erosion problems such as sedimentation of lakes and river, loss of navigable waterways, flooding and water quality impairment, has been estimated at 44 billion USD (Pimentel, 1995; Telles, 2011). While eroding sediment sources can either be from land or from stream/river systems, the erosion from streambanks can be quite significant, reaching up to 80% of sediment leaving a watershed (Simon et al 2002; Simon and Rinaldi 2006). Despite many decades of research one the erosion of cohesive soils by flowing water (fluvial erosion), this significant aspect of environmental sustainability and engineering is still poorly understood. While past studies have given invaluable insight into fluvial erosion, this process is still poorly understood. Therefore, the objective of this dissertation was to examine the relationship between time and erosion resistance of remolded cohesive soils, and to quantify and model the effects soil and water temperature on the fluvial erosion of cohesive soils First, erosion tests were performed to investigate how soil erosion resistance develops over time using three natural soils and testing in a laboratory water channel. Results showed that the erosion rate of the soils decreased significantly over the time since the soils were wetted. This study indicates researchers need to report their sample preparation methods in detail, including the time between sample wetting and sample testing. Second, erosion tests were performed at multiple soil and water temperatures. Results showed that increases in water temperature led to increased erosion rates while increases in soil vi temperature resulted in decreased erosion rate. When soil and water temperatures were equal, erosion results were not significantly different. Results also showed a linear relationship between erosion rate and the difference between soil and water temperatures, indicating erosion resistance decreased as heat energy was added to the soil. Lastly, two common erosion models (the excess shear stress and the Wilson models) were evaluated, and were modified to account for soil and water temperature effects. Results showed that, compared to the original models, the modified models were better in predicting erosion rates. However, significant error between model predictions and measured erosion rates still existed. Overall, these results improve the current state of knowledge of how erosion resistance of remolded cohesive soils evolves with time, showing the importance of this factor in the design of cohesive erosion experiments. Also, the results show that by accounting for thermal effects on erosion rate, the usability of erosion models can be improved in their use for erosion predictions in soil and water conservation and engineering practice.
2

Volume Change Behavior of Expansive Soils due to Wetting and Drying Cycles

January 2013 (has links)
abstract: In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2013
3

Development of Miniature Full Flow and Model Pipeline Probes for Testing of Box Core Samples of Surficial Seabed Sediments

Boscardin, Adriane G. 01 May 2013 (has links)
The box corer is a relatively new tool used in the geotechnical community for collection of soft seabed sediments. Miniature full flow and model pipeline probes were developed as tools to characterize and obtain soil parameters of soft seabed sediments collected in the box core for design of offshore pipelines and analysis of shallow debris flows. Probes specifically developed for this study include the miniature t-bar, ball, motorized vane (MV), and toroid. The t-bar, ball, and MV were developed to measure intact and remolded undrained shear strengths (su and sur). The t-bar and ball can obtain continuous strength profiles and measure sur at discrete depths in the box corer while the MV measures su and sur at discrete depths. The toroid is a form of model pipeline testing which was developed to investigate pipe-soil interaction during axial pipeline movement. Vertical loading and displacement rates can be selected for the toroid to mimic axial pipeline displacement for a variety of pipe weights. A load frame for both miniature penetrometer and toroid testing was developed for testing directly on box core samples offshore. This research presents results from offshore and laboratory testing of the box core and recommended testing procedures for full flow and toroid probes on box core samples.

Page generated in 0.0421 seconds