1 |
Integrated modeling approach for enery alternatives and green house gas mitigation in the state of FloridaUnknown Date (has links)
The objective of the research is to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for state of Florida through energy and environment modeling tool called LEAP (Long Range Energy Alternative Planning System Model) for 2010-2050. The GHG mitigation scenarios consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida and then the comparison has been made for transformation sector and corresponding GHG emissions through this newly developed mitigation scenario versus Business As Usual and Florida State Policy scenario. Moreover two master mitigation scenarios (Electrification and Efficiency and Lifestyle) were crafted through combination of certain GHG mitigation scenarios. The energy demand and GHG emissions assessment is performed for both master mitigation scenarios versus business As Usual scenario for 2010 – 2050. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
|
2 |
A hydrokinetic resource assessment of the Florida CurrentUnknown Date (has links)
The Straits of Florida has been noted as a potential location for extraction of the kydrokinetic energy of the Florida Current, in view of the strength of the current and its proximity to the shore. ... This research explores the Florida Current as a potential renewable energy source. By utilizing historical data, in situ observations of the Florida Current, and computer model data, the hydrokinetic resource of the Florida Current is characterized both spatially and temporally. Subsequently, based on the geographic variability of the hydrokinetic power and other factors that impact the economy of a hydrokinetic turbine array installation, the ideal locations for turbine array installation within the Florida Current are identified.... Additionally, an interactive tool has been developed in which array parameters are input - including installation location, turbine diameter, turbine cut-in speed, etc. - and array extraction estimates, ideal installation position, and water depth at the installation points are output. As ocean model data is prominently used in this research, a discussion about the limitations of the ocean model data and a method for overcoming these limitations are described. Globally, the distribution of hydrokinetic power intensity is evaluated to identify other currents that have a high hydrokinetic resource. / by Alana E. Smentek-Duerr. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
|
Page generated in 0.0718 seconds