Spelling suggestions: "subject:"repeated accuracy""
1 |
Automatic oral proficiency assessment of second language speakers of South African EnglishMuller, Pieter F.de V. 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The assessment of oral proficiency forms an important part of learning a second language.
However, the manual assessment of oral proficiency is a labour intensive task requiring specific
expertise. An automatic assessment system can reduce the cost and workload associated
with this task. Although such systems are available, they are typically aimed towards assessing
students of American or British English, making them poorly suited for speakers of South
African English. Additionally, most research in this field is focussed on the assessment of
foreign language students, while we investigate the assessment of second language students.
These students can be expected to have more advanced skills in the target language than
foreign language speakers.
This thesis presents a number of scoring algorithms for the automatic assessment of
oral proficiency. Experiments were conducted on a corpus of responses recorded during an
automated oral test. These responses were rated for proficiency by a panel of raters based
on five different rating scales. Automatic scoring algorithms were subsequently applied to
the same utterances and their correlations with the human ratings determined.
In contrast to the findings of other researchers, posterior likelihood scores were found to
be ineffective as an indicator of proficiency for the corpus used in this study. Four different
segmentation based algorithms were shown to be moderately correlated with human ratings,
while scores based on the accuracy of a repeated prompt were found to be well correlated
with human assessments.
Finally, multiple linear regression was used to combine different scoring algorithms to
predict human assessments. The correlations between human ratings and these score combinations
ranged between 0.52 and 0.90. / AFRIKAANSE OPSOMMING: Die assessering van spraakvaardigheid is ’n belangrike komponent van die aanleer van ’n
tweede taal. Die praktiese uitvoer van sodanige assessering is egter ’n arbeids-intensiewe
taak wat spesifieke kundigheid vereis. Die gebruik van ’n outomatiese stelsel kan die koste
en werkslading verbonde aan die assessering van ’n groot aantal studente drasties verminder.
Hoewel sulke stelsels beskikbaar is, is dit tipies gemik op die assessering van studente wat
Amerikaanse of Britse Engels wil aanleer, en is dus nie geskik vir sprekers van Suid Afrikaanse
Engels nie. Verder is die meerderheid navorsing op hierdie gebied gefokus op die assessering
van vreemde-taal sprekers, terwyl hierdie tesis die assessering van tweede-taal sprekers ondersoek.
Dit is te wagte dat hierdie sprekers se spraakvaardighede meer gevorderd sal wees
as di´e van vreemde-taal sprekers.
Hierdie tesis behandel ’n aantal evaluasie-algoritmes vir die outomatiese assessering van
spraakvaardighede. Die eksperimente is uitgevoer op ’n stel opnames van studente se antwoorde
op ’n outomatiese spraaktoets. ’n Paneel van menslike beoordelaars het hierdie opnames
geassesseer deur gebruik te maak van vyf verskillende punteskale. Dieselfde opnames is deur
die outomatiese evaluasie-algoritmes verwerk, en die korrelasies tussen die beoordelaars se
punte en die outomatiese evaluerings is bepaal.
In kontras met die bestaande navorsing, is daar gevind dat posterieure waarskynlikheidsalgoritmes
nie ’n goeie aanduiding van spraakvaardighede gee vir ons datastel nie. Vier
algoritmes wat van segmentasies gebruik maak, is ook ondersoek. Die evaluerings van hierdie
algoritmes het redelike korrelasie getoon met die punte wat deur die beoordelaars toegeken is.
Voorts is drie algoritmes ondersoek wat daarop gemik is om die akkuraatheid van herhaalde
sinne te bepaal. Die evaluerings van hierdie algoritmes het goed gekorreleer met die punte
wat deur die beoordelaars toegeken is.
Laastens is liniˆere regressie gebruik om verskillende outomatiese evaluerings te kombineer
en sodoende beoordelaars se punte te voorspel. Die korrelasies tussen hierdie kombinasies
en die punte wat deur beoordelaars toegeken is, het gewissel tussen 0.52 en 0.90.
|
Page generated in 0.0713 seconds