Spelling suggestions: "subject:"responsive intelligent bondmaterialien"" "subject:"responsive intelligent bodenmaterialien""
1 |
Light-Controlled Mechanically Interlocked Molecules and MaterialsBoelke, Jan 28 March 2024 (has links)
Im Zusammenhang mit auf Reize reagierenden Materialien ist Licht aufgrund seiner hohen räumlichen und zeitlichen Auflösung von besonderer Bedeutung. Hierfür können molekulare Photoschalter, wie z.B. Azobenzole, in das Material eingebaut werden, um eine Reaktion auf Lichteinstrahlung von der molekularen auf die makroskopische Ebene zu übertragen. Fortschrittliche Moleküldesigns, wie z.B. Ortho-Fluorierung, führen dabei zu hervorragenden bistabilen Photoschaltern, die in Kombination mit Cyclodextrinen (CDs) als supramolekulare Bausteine eine Vielfalt an lichtempfindlichen Materialien ermöglichen.
Um ein grundlegendes Verständnis der Wechselwirkungen von ortho-Fluorazobenzolen (FAzos) mit CDs zu erlangen, wurde in Kapitel II deren supramolekulare Wirt-Gast-Komplexierung untersucht. Hierbei konnte eine veränderte Barriere des Auffädelns der CDs beobachtet werden. Durch detaillierte Untersuchungen an polymeren Modellverbindungen in Kapitel III konnte gezeigt werden, dass das Auffädeln über die Z- im Vergleich zu den E-Isomeren der FAzos deutlich reduziert ist und dadurch die Bildung von Pseudo-Polyrotaxanen durch Bestrahlung mit Licht kontrolliert werden kann. Durch speziell konzipierte DOSY-Experimente konnte die Abfädelungskinetik aus Polyrotaxanen, bei denen die CDs durch das Z-Azobenzol auf der Achse fixiert wurden, verfolgt werden. Somit konnte gezeigt werden, dass eine Kontrolle der Bewegung von CDs durch Licht möglich ist. Auf Grundlage dieser Ergebnisse wurden in Kapitel IV neuartige lichtempfindliche Slide-Ring Materialien entwickelt, die bei Lichteinstrahlung eine reversible Änderung ihrer Steifigkeit aufweisen. Die Materialien wurden so konzipiert, dass sie ortho-Fluorazobenzole enthalten, die als durch Licht schaltbare Barrieren für das Gleiten von CDs entlang des Polymerrückgrats dienen. Hierdurch konnte eine reversible Änderung des Elastizitätsmoduls durch Bestrahlung mit Licht erzielt werden und somit ein erfolgreicher Konzeptnachweis erbracht werden. / In the context of stimuli-responsive materials, light is of particular importance due to its high spatial and temporal resolution. For this purpose, molecular photoswitches, such as azobenzenes, can be incorporated into the material to transfer a response to light irradiation from the molecular to the macroscopic level. Advanced molecular designs, such as ortho-fluorination, lead to excellent bistable photoswitches which, in combination with cyclodextrins (CDs) as supramolecular building blocks, enable a variety of light-responsive materials.
To gain a fundamental understanding of the interactions of ortho-fluoroazobenzenes (FAzos) with CDs, their supramolecular host-guest complexation was investigated in Chapter II. An altered barrier for the threading of CDs was thereby observed. Detailed studies on polymeric model compounds in Chapter III showed that threading over the Z-isomers of the FAzos is significantly reduced compared to the E-isomers and that the formation of pseudo-polyrotaxanes can thus be controlled by irradiation with light. Using specially designed DOSY experiments, the threading kinetics from polyrotaxanes, in which the CDs where fixed on the axis by the Z-azobenzene, could be followed. This showed that it is possible to control the movement of CDs by light. Based on these results, novel photoresponsive slide-ring materials were developed in Chapter IV, which exhibit a reversible change in stiffness when exposed to light. The materials were designed to contain ortho-fluoroazobenzenes, which serve as photoswitchable barriers for the sliding of CDs along the polymer backbone. This enabled a reversible change of the elastic modulus to be accomplished by irradiation with light, thus providing a successful proof of concept.
|
2 |
Dynamic Covalent Chemistry for Accelerated Photoswitch Discovery and Photoswitchable Core-Shell Metal-Organic FrameworksMutruc, Dragos 07 July 2022 (has links)
Photoschalter sind Moleküle, die eine reversible lichtgesteuerte Umwandlung zwischen zwei Zuständen mit unterschiedlichen Eigenschaften durchlaufen. In den letzten zehn Jahren hat der Einbau dieser photochromen Moleküle in intelligente, auf Stimuli ansprechende Materialien zunehmende Aufmerksamkeit erregt, da sie die einzigartige Fähigkeit bieten, makroskopische Eigenschaften mit einem externen optischen Stimulus reversibel zu verstärken und zu verändern. Die begrenzte Leistung von Photoschaltern in festen Medien bleibt eine Herausforderung. In diesem Zusammenhang werden in dieser Arbeit zwei wichtige Aspekte näher untersucht. Erstens der Prozess der Entwicklung neuer Photoschalter mit maßgeschneiderten Eigenschaften und zweitens die Implementierung von Photoschaltern in feste Materialien und die damit verbundenen Herausforderungen.
Im ersten Teil dieser Arbeit wurde Dynamisch-kovalente Chemie (DCC) verwendet, um die Entdeckung und Entwicklung einer neuartigen Klasse von Photoschaltern mit drei Zuständen zu beschleunigen. Die dynamische Natur der zentralen Doppelbindung von α-Cyanodiarylethenen wurde genutzt, um ein thermodynamisches Gleichgewicht mit anderen Arylacetonitrilen herzustellen. Die entwickelte Methode kombiniert eine schnelle Diversifizierung mit einer Rasterung auf spezifische Eigenschaften, die durch einen externen Stimulus aufgedeckt werden, und ermöglicht die effiziente Untersuchung der Beziehung zwischen Struktur und den zugehörigen Eigenschaften.
Im zweiten Teil der Arbeit wird die Entwicklung und die Synthese eines Zweikomponenten-Kern-Schale-MOFs mit einem internen nicht-funktionalisierten Kompartiment, das von einer dünnen photoschaltbaren Außenschale bedeckt ist, vorgestellt. Diese Strategie ermöglicht ein effizientes Schalten des Chromophors und die resultierende dünne „intelligente“ Schale fungiert als modulare kinetische Barriere für die molekulare Gastdiffusion in das Material, die durch Licht gesteuert werden kann. / Photoswitches are molecules that undergo a reversible light-triggered conversion between two states with different properties. In the past decade, the incorporation of these photochromic molecules in smart stimuli-responsive materials has gained increased attention as it offers the unique ability to reversibly amplify and change macroscopic properties with an external optical stimulus. The limited performance of photoswitches in solid mediums remains a challenge. In this context two important aspects are studied in more detail in this thesis. First, the process of developing new photoswitches with tailored properties and second, the implementation of photoswitches in solid materials and the challenges associated with it.
In the first part of this thesis dynamic covalent chemistry (DCC) was used to accelerate the discovery and development of a novel three-state photoswitch class. The dynamic nature of the central double bond of α-cyanodiarylethenes was exploited to establish a thermodynamic equilibrium with other arylacetonitriles. The developed DCC tool combines fast and efficient diversification with screening for specific photochemical properties revealed by an external stimulus, enabling the rapid study of the relationship between structure and the associated properties.
The second part of this thesis summarizes the design and synthesis of a two-component core-shell MOF with an internal non-functionalized compartment covered by a thin photoswitchable outer shell. This strategy allows efficient switching of the chromophore and the resulting thin “smart” shell acts as a modular kinetic barrier for molecular guest diffusion into the material that can be controlled by light.
|
Page generated in 0.1711 seconds