• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resolubilidade local de campos vetoriais reais / Local solvability of real vector fields

Almeida, Uirá Norberto Matos de 14 February 2014 (has links)
Nesta dissertação vamos estudar alguns importantes resultados acerca da resolubilidade local de operadores lineares de primeira ordem. Mais especificamente, seja o campo vetorial singular L em \'R POT. n\' e dado por: L = \'\\SIGMA SUP. m\' . INF. j=1\' a IND. j\' (x) \'SUP. \\PARTIAL\' INF. \\PARTIAL x INF. j\'. Esta trabalho dirige-se ao estudo da resolubilidade local de L, isto é, dada f \'PERTENCE A\' \' C POT. INFINITO\' (\'R POT. n\') e dado \'x IND. 0\' \'PERTENCE A\' \'R POT. n queremos encontrar u \'PERTENCE A\' D\'(\'R POT.n \') tal que Lu = f numa vizinhança de \'x INF. 0\'. Será dada atenção especial ao caso em que os coeficientes \'a IND. j\'(x) de L são função lineares. Também, serão apresentados resultados sobre a resolubilidade local da equação Lu = cu + f, sendo c \'PERTENCE A\' \'C POT. INFINITO\' (\'R POT. n\') / This dissertation aims to study some important results about local solvability of first order differential operators. Specifically, let L be a singular vector field on \'R POT. n\' given by L = \' \\SIGMA SUP. m INF.j=1\' \'a IND. j(x) \'\\PARTIAL SUP. INF. \\PARTIAL x INF. j\'. This work explore the local solvability of L, that is, given f \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\' and \'x INF. 0\' \'IT BELONGS\' \'R POT. n\' we want to find u \'IT BELONGS\' 2 D\'(\'R POT. n) such that Lu = f in a neighborhood of \'x INF. 0\'. We give special attention to the case where the coefficients \'a IND. j\'(x) are linear. We also present some results about local solvability of the equation Lu = cu + f for c \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\')
2

Resolubilidade local de campos vetoriais reais / Local solvability of real vector fields

Uirá Norberto Matos de Almeida 14 February 2014 (has links)
Nesta dissertação vamos estudar alguns importantes resultados acerca da resolubilidade local de operadores lineares de primeira ordem. Mais especificamente, seja o campo vetorial singular L em \'R POT. n\' e dado por: L = \'\\SIGMA SUP. m\' . INF. j=1\' a IND. j\' (x) \'SUP. \\PARTIAL\' INF. \\PARTIAL x INF. j\'. Esta trabalho dirige-se ao estudo da resolubilidade local de L, isto é, dada f \'PERTENCE A\' \' C POT. INFINITO\' (\'R POT. n\') e dado \'x IND. 0\' \'PERTENCE A\' \'R POT. n queremos encontrar u \'PERTENCE A\' D\'(\'R POT.n \') tal que Lu = f numa vizinhança de \'x INF. 0\'. Será dada atenção especial ao caso em que os coeficientes \'a IND. j\'(x) de L são função lineares. Também, serão apresentados resultados sobre a resolubilidade local da equação Lu = cu + f, sendo c \'PERTENCE A\' \'C POT. INFINITO\' (\'R POT. n\') / This dissertation aims to study some important results about local solvability of first order differential operators. Specifically, let L be a singular vector field on \'R POT. n\' given by L = \' \\SIGMA SUP. m INF.j=1\' \'a IND. j(x) \'\\PARTIAL SUP. INF. \\PARTIAL x INF. j\'. This work explore the local solvability of L, that is, given f \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\' and \'x INF. 0\' \'IT BELONGS\' \'R POT. n\' we want to find u \'IT BELONGS\' 2 D\'(\'R POT. n) such that Lu = f in a neighborhood of \'x INF. 0\'. We give special attention to the case where the coefficients \'a IND. j\'(x) are linear. We also present some results about local solvability of the equation Lu = cu + f for c \'IT BELONGS\' \'C POT. INFINITY\' (\'R POT. n\')

Page generated in 0.0918 seconds