• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modified Polyacrylates as a new Leather Retanning Agents

Canudas, Miquel, Menna, N., Torrelles, A., De Pablo, J., Morera, J. M. 31 May 2019 (has links)
Acrylic resins have affinity for chrome tanned leather, for this reason, they are widely used as a retanning products. Its main use as a retanning agents is to produce full leathers. However, the leathers retanned with them have lower colour intensity and poorer structural properties because of their high anionicity which change the cationic surface of the leather causing a lower interaction of dyeing and fatliquoring agents with leather. This study proposes the use of modified polyacrylates as a new retanning agents. They were applied in leather versus traditional acrylic resins. The properties of the retanned leathers were evaluated concluding that this type of resins improve some leather properties avoiding the dyeing and fatliquoring problems of the traditional acrylic resins. The structure and the molecular weight of the modified polyacrylates play an interesting role in the improvement of the fixation of dyes and fatliquors, but also its lower anionic charge in comparison to the traditional acrylic resins. It has been observed that final leathers have a better colour intensity and softness. Moreover, its use as retanning agents favours the absorption of dyes and fatliquors which means an environmental improvement for the wet end process.
2

Acrylic resins in wet white

Ballus, Olga, Guix, M., Micó, R., Palop, R. 26 June 2019 (has links)
Content: The purpose of this paper is to study the influence of acrylic resins on the properties of the hide when added in the pickling-tanning stage of a wet white process. Among retanning products, acrylic resins are very frequently used because they lend very good properties to the hide on account of their high affinity for chromium. When applied during chrome tanning, these resins provide the hides with high fullness, due to the strong interaction of the carboxylate groups with chromium. Extensive bibliography is available on the application of acrylic resins in wet blue, where it is observed that the properties they provide to the hides depend basically on the type of monomers and molecular weight. However, less information is found when these products are applied in wet white tanning. In this study, 9 resins with different molecular weights and different monomer compositions were selected. Resins were applied to pelt leathers of Spanish origin split at 3.5 mm. Hides were cut along the backbone. A standard process was applied to the left halves and the same process adding the resin was applied to the right halves. The resin was added after adjusting the salt of the bath and before adding the pickling acids. The COD was measured before and after adding formic and sulfuric acid, and the shrinkage temperature and the degree of whiteness of the tanned hide were assessed. Hides were retanned and fatliquored with a standard process, and degree of softness, thickness, color intensity and organoleptic properties (fluffiness, compactness and grain tightness) were assessed. Leather shrinkage under temperature was also assessed, and images of leather sections were obtained by scanning electron microscopy (SEM). While acrylic resins did not increase shrinkage temperature, they did fix and/or deposit themselves in the interfibrillary spaces of the hide; indeed, highly reduced COD values after acidification in the pickling stage were observed. This study shows that homopolymeric acrylic resins provided fuller and fluffier hides, while the rest of resins practically did not improve the physical and organoleptic properties of the hides. Take-Away: Homopolymeric acrylic resins provided full er and fluffier hides, while the rest of resins practically did not improve the physical and organoleptic properties of the hides Wet white tanning improvement
3

Factors affecting penetration of acrylic resin in crust leather during retanning process

Song, Y., Zeng, Yunhang, Cao, M., Shi, B. 26 June 2019 (has links)
Content: Acrylic resin (AR) is a most popular retanning agent due to its selective filling property and advantage of formaldehyde-free. The retanning performance of acrylic resin mainly depends on its penetration depth and filling parts in leather. Therefore, to improve the retanning performance, it is necessary to fully understand the factors affecting the mass transfer and the distribution of acrylic resin in leather. We have found that the structure and the charge of leather and the dosage of acrylic resin rather than the molecular weight of acrylic resin are important factors affecting the penetration rate of acrylic resin in crust leather by using fluorescent tracer technique. In this study, from the view of electrostatic interaction, effects of neutralizing pH and retanning auxiliaries such as phenol sulfonic acid condensation (PSAC) and sodium carboxymethylcellulose (CMC) on the penetration and the distribution of acrylic resin in crust leather were investigated. Higher neutralizing pH led to a faster transfer of acrylic resin in leather because of the decrease in the positive charges of chrome-tanned leather (isoelectric point 7.1) and the increase in the negative charges of acrylic resin. Employing PSAC and CMC enhanced acrylic resin transfer in crust leather due to the dramatic increase in the negative charges of acrylic resin. These results indicated that decreasing the electrostatic binding force between acrylic resin and crust leather is beneficial to the penetration of acrylic resin in leather, which could be achieved by adjusting the neutralizing pH or using acrylic resin together with proper retanning auxiliaries. Take-Away: 1. Using phenol sulfonic acid condensation and sodium carboxymethylcellulose enhanced acrylic resin transfer in crust leather. 2. Decreasing electrostatic binding force between acrylic resin and crust leather is beneficial to penetration of acrylic resin in leather. 3. Increasing neutralizing pH or using proper retanning auxiliaries can decrease the electrostatic interaction between acrylic resin and crust leather effectively.
4

A Multifunctional Gelatin-Quaternary Ammonium Copolymer Exhibiting Superior Anionic Dye Adsorption for Efficient Emission Reduction in Leather Tanning Process

Xu, S. L., Xu, J., Lu, J. M., Li, T. D. 05 July 2019 (has links)
Leather wastewater is one of the most polluting industrial emissions. An in-situ, green, and innovative strategy that limits dye emissions is required to replace subsequent waste management. A novel cationic protein with a high quaternary ammonium degree was designed and synthesized. The results show that at concentrations ranging from 3 to 15 wt%, this cationic protein rapidly and completely adsorbs Direct Purple N and Acid Black 24 within 5 min. A remarkable efficiency in removing Acid Red 73, Acid Golden G, Acid Lake Blue A, Acid Green, and Acid Orange II, with >96% removal rates, was achieved. The cationic protein was most accurately represented by the pseudo-second-order kinetic model. Acid Orange II (2000 mg L-1) and 15 wt% cationic protein were used in an actual tanning process. The residual concentration of Acid Orange II in the wastewater was 23.1 mg L-1. These results reflect that the emission reduction targets have been effectively achieved.

Page generated in 0.0808 seconds