• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O trato retino-hipotal?mico no moc? (Kerodon rupestris): Um estudo de tra?ado anter?grado com a subunidade b da toxina col?rica

Magalh?es, M?rcia de Albuquerque Ferreira 28 March 2008 (has links)
Made available in DSpace on 2014-12-17T15:36:51Z (GMT). No. of bitstreams: 1 MarciaAFM.pdf: 1370878 bytes, checksum: 51aee5b7941400056788fa2e93d0df1a (MD5) Previous issue date: 2008-03-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The light, besides the vision stimuli, controls other process completely independent of image formation, such as the synchronization of the organismic circadian rhythms to the enviromental light/dark cycle. In mammals, this adjust occurs through the retinohypothalamic tract, a direct retinal projection to the suprachiasmatic nucleus, considered to be the major circadian pacemaker. Early studies have identified only the suprachiasmatic nucleus as a retinal target in the hypothalamus. However, using more sensitive neuroanatomic tracers, other retinorecipient hypothalamic regions outside to suprachiasmatic nucleus were pointed in a great number of mammalian species. In this study, the retinohypothalamic tract was shown in the rock cavy (Kerodon rupestris), an endemic rodent of the semiarid region of the Brazilian Northeast, using unilateral intravitreal injections of cholera toxin subunit b as a neuronal tracer. The results reveal that in the rock cavy, besides the suprachiasmatic nucleus, several hypothalamic regions receive direct retinal projection, such as the ventrolateral preoptic nucleus, medial and lateral preoptic areas, the supraoptic nucleus and bordering areas, anterior, lateral and rectrochiasmatic hypothalamic areas, and the subparaventricular zone. The results are discussed by comparing with those of the literature, into a functional context / A luz, al?m de ser o est?mulo para a vis?o, tamb?m controla processos que s?o completamente independentes da forma??o de imagem, como o ajuste dos ritmos circadianos do organismo ao ciclo claro/escuro ambiental. Em mam?feros, este ajuste ocorre atrav?s do trato retino-hipotal?mico, uma proje??o direta da retina para o n?cleo supraquiasm?tico, o principal marcapasso circadiano. Os trabalhos pioneiros mostraram a proje??o retino-hipotal?mica exclusivamente para o n?cleo supraquiasm?tico. Entretanto, atrav?s do uso de tra?adores neurais mais sens?veis, outras ?reas hipotal?micas retino-recipientes foram apontadas em um amplo n?mero de esp?cies de mam?feros. Neste trabalho o trato retino-hipotal?mico no moc? (Kerodon rupestris), um roedor end?mico da caatinga brasileira, foi demonstrado atrav?s de inje??o intra-ocular unilateral da subunidade b da toxina col?rica como tra?ador neuronal e revela??o imuno-histoqu?mica. Os nossos resultados mostram que, no moc?, al?m do n?cleo supraquiasm?tico, v?rias outras ?reas hipotal?micas recebem proje??o direta da retina, tais como o n?cleo pr?-?ptico ventrolateral, as ?reas pr?-?pticas medial e lateral, o n?cleo supra-?ptico e adjac?ncias, as ?reas hipotal?micas anterior, lateral e retroquiasm?tica e a zona subparaventricular. Os resultados s?o discutidos ? luz dos dados da literatura, dentro de um contexto funcional
2

The role of sensory systems in directional perception of the fiddler crab, Uca pugilator

Ebie, Jessica D. 08 October 2012 (has links)
No description available.
3

The Effects Of Early Postnatal Ethanol Intoxication On Retina Ganglion Cell Morphology And The Development Of Retino-geniculate Projections In Mice

Dursun, Ilknur 01 February 2010 (has links) (PDF)
Experimental and clinical data have documented the adverse effects of perinatal ethanol intoxication on peripheral organs and the central nervous system. There is little known, however, about potential damaging effects of perinatal ethanol on the developing visual system. The purpose of this study was to examine the effects of neonatal ethanol intoxication on RGC morphology, estimate the total number of neurons in RGC layer and dorsolateral geniculate nucleus (dLGN), and on the eye-specific fiber segregation in the dLGN), in YFP and C57BL/6 mice pups. Ethanol (3 g/kg/day) was administered by intragastric intubation throughout postnatal days (PD) 3-20 or 3-10. Intubation control (IC) and untreated control (C) groups were included. Blood alcohol concentration (BAC) was measured in separate groups of pups on PD3, PD10, and PD20 at 4 different time points, 1, 1.5, 2 and 3 h after the second intubation. Numbers neurons in the RGCs and dLGN were quantified on PD10, PD20 using unbiased stereological procedures. The RGC images were taken using a confocal microscope and images were traced using Neurolucida software. On PD9, intraocular injections of cholera toxin-

Page generated in 0.0213 seconds