31 |
Effects of flocculation on retrovirus processing, delivery and transductionLandazuri, Natalia 13 April 2005 (has links)
The efficiency of retrovirus-mediated gene transfer can be dramatically enhanced by inducing flocculation of viruses. Addition of oppositely charged polymers to virus stocks resulted in the formation of virus-polymer complexes. The complexes specifically incorporated virus particles and only few other proteins, were not cytotoxic, did not reduce the stability of the viruses, and were large enough to sediment, delivering the viruses to the cells more rapidly than by simple diffusion. Increases in the rate of transport of viruses correlated with increases in the rate of transduction, as the polymers did not affect the efficiency of post-binding steps of transduction. The formation of virus-polymer complexes also permitted concentrating viruses and purifying the stocks from inhibitors of transduction. Pelleting of the complexes followed by resuspension of the pellet in a reduced volume of fresh cell culture medium resulted in substantial enhancement of transduction. Purified virus stocks could be used in smaller quantities than unprocessed stocks to achieve a given level of gene transfer and reduced uncertainties about the relationship between the amount of virus used and the number of genes transferred. When using high concentrations of purified viruses, the efficiency of gene transfer was dependent on the number of envelope proteins displayed on the surface of each virus particle. Viruses with a low number of envelope proteins transduced cells more efficiently than did viruses with a high number of envelope proteins, and allowed more integrations of the transgene per target cell. In contrast, when the number of envelope proteins per virus particle was high, transduction appeared to be limited by a reduction in availability of functional receptors for viruses pseudotyped with the same envelope. Taken together, this novel method for processing retrovirus stocks and a better understanding of major limitations of transduction should simplify efforts to predict the outcome of retrovirus transduction protocols and should help to increase the likelihood that human gene therapy protocols will succeed.
|
32 |
A study of mechanisms of genotoxicity in mammalian cells by retrovirus vectors intended for gene therapyReja, Safia January 2013 (has links)
Retrovirus gene therapy vectors can deliver therapeutic genes to mammalian cells in a permanent manner by integrating their genome into host chromosomes and therefore provide the potential for long term therapeutic gene expression. Retrovirus integration, however, can be oncogenic. Apart from insertional mutagenesis (IM) genotoxicity may be caused by other factors including DNA damage following infection and integration and epigenetic effects related to incoming viral particles. Thus, using retrovirus and lentivirus infected murine tumour tissue and infected cell lines in vitro this thesis was directed at investigating whether virus infection and integration could cause genotoxicity by alternative route(s) other than IM. Using clonally derived liver tumours that developed in mice, and normal liver and kidney tissues, following EIAV and HIV delivery in utero, comparative genome hybridisation methodology was used to examine for copy number variation. This showed amplification and deletions only in EIAV derived tumours. Real time Q-PCR analysis was then used to measure gene expression changes relating to genes contained within or near to amplifications observed in two tumours of individual mice. The STRING database was then used to find networks linking genes with differential expression profiles and genes in one of these tumours identified with provirus insertions that were also differentially expressed. These data provided preliminary data implicating a role for LV in Hepatocellular carcinoma (HCC). DNA damage is known to cause chromosomal instability that can lead to tumour development. The relationship between double strand breaks (DSB) and virus infection was also investigated in-vitro to find alternative routes to genotoxicity other than IM. Cell viability analysis demonstrated cells with a defective DNA damage response (DDR) have decreased cell viability compared with cells with intact DDR when infected with RV or LV vectors. DSB assays showed RV and LV infection to generate foci over a 6 hour period followed by DDR. Where no viral integrase is present, no DDR appears, however, where the vector is used with or without a genome to infect cells, DDR occurs as shown by the presence of 53BP1 foci indicative of DNA damage. The relationship between DNA damage and methylation was also investigated. Global methylation was found elevated in the genomic DNA of LV and RV infected cells and not in control uninfected cells. In contrast, methylation changes were not found in infected cells lacking the NHEJ repair pathway. These data suggest the DNA damage response is linked to genome methylation. The E2F transcription factor plays a key role in regulating expression of genes known to control oncogenesis and cancer, and E2F is regulated by methylation of its related target gene promoters. Taking into account all genes in the human genome the number of genes that bind E2F is 32.77%. However, using microarray to represent genes differentially expressed after infection, 59% of these were E2F targets. Overall, taking the data obtained in this thesis into account it may be suggested that RV and LV infection causes a number of potentially related changes to cells that include DNA damage and repair and methylation changes that could influence E2F that is an important factor involved in oncogenesis. Combining this with IM, attenuated RV and LV currently in use for gene therapy may cause genotoxicity to infected cells and increase the risk of oncogenesis especially where DNA damage is not correctly repaired. Further work is required to show in greater detail the extent of this genotoxicity, possible by whole genome sequencing of treated host genomes or cell transformation assays linked to the genotoxicity assays presented here. Collectively these data show that alternative factors to IM might exist that could act independently or synergistically to IM.
|
33 |
Paleovirology: Using Endogenous Retroviruses Within Animal Genomes To Understand The Deep History Of RetrovirusesHan, Guanzhu January 2014 (has links)
Retroviruses infect a wide range of vertebrates. The understanding of the deep history and host distribution of retroviruses remains far from complete. Retroviruses can be integrated into their host genomes and occasionally become vertically inherited genomic loci. These integrated retroviruses, known as endogenous retroviruses (ERVs), provide "molecular fossils" for past retroviral infections and are useful for studying the deep history and ecology of retroviruses. ERVs are highly abundant in vertebrate genomes. However, endogenous foamy viruses and lentiviruses appear to be extremely rare. The primary focus of the research presented here is to discover and analyze novel endogenous foamy viruses and lentiviruses in animal genomes. Foamy virus has been thought to exclusively infect three placental mammal superorders (Laurasiatheria, Euarchontoglires, and Xenarthra). The discovery of endogenous foamy viral elements (CoeEFV) in the genome of the coelacanth (Latimeria chalumnae) extends the host range of foamy viruses to fish lineages (Appendix A). I demonstrate that foamy viruses have likely codiverged with their vertebrate hosts for more than 407 million years. The discovery of CoeEFV provides evidence for an ancient marine origin of retroviruses. Endogenous foamy virus-like elements (PSFVaye) were also identified within the genome of a Malagasy lemur, the aye-aye (Daubentonia madagascariensis) (Appendix B). Phylogenetic analysis shows that PSFVaye is divergent from all currently known simian foamy viruses, suggesting a potentially ancient association between foamy viruses and primate species. Another novel endogenous foamy virus (CaEFV) was identified in the genome of the Cape golden mole (Chrysochloris asiatica). The discovery of CaEFV reveals foamy virus infection in the placental mammal superorder Afrotheria and the long-term cospeciation between foamy viruses and placental mammals (Appendix C). Lentivirus has been thought to have a relatively recent origin. Endogenous lentivirus insertions (MELV) were discovered within the genomes of some species of the Weasel family (Mustelidae) (Appendix D). I verified the presence of MELV insertions in the genomes of several species of the Lutrinae and Mustelinae subfamilies but not the Martinae subfamily, which suggests that the lentiviral invasion likely occurred between 8.8 and 11.8 million years ago. Phylogenetic analysis suggests MELV might represent a novel lentiviral group. The discovery of MELV extends the host range of lentiviruses to the Caniformia. Endogenous lentiviruses (GvaELV) were also identified in the genome of the Sunda flying lemur (Galeopterus variegatus) (Appendix E). Phylogenetic analysis shows that GvaELV is a sister group of all known lentiviruses. The discovery of GvaELV might give a clue to the early evolution of lentiviral genome architecture. In summary, the discoveries and analyses of these novel ERVs provide important insights into the deep history and ecology of foamy viruses and lentiviruses as well as the retroviruses as a whole.
|
34 |
Analysis of Connections Between Host Cytoplasmic Processing Bodies and Viral Life CyclesBeckham, Carla Jolene January 2007 (has links)
In the past few years, cytoplasmic processing bodies (P-Bodies) have been identified in eukaryotic cells. P-bodies have roles in translational repression, mRNA storage, mRNA decay and are conserved cytoplasmic aggregations of non-translating mRNAs in conjunction with translation repression and mRNA degradation factors. In this work, I, in collaboration with others provide evidence for a new biological role for P-bodies in viral life cycles. This work can be summarized thus:In a collaborative effort, I have identified connections between retrovirallike transposon life cycles and P-bodies. For example, genetic evidence in yeast indicates that key proteins within P-bodies are required for the life cycles of the Ty1 and Ty3 retrotransposons. Moreover, Ty3 genomic RNA (gRNA) as well as viral structural proteins accumulate in P-bodies, suggesting that P-bodies may serve as sites of viral assembly.Second, I have shown, with assistance of collaborators, that the positivestrand RNA virus, Brome Mosaic Virus (BMV) gRNA accumulates in P-bodies Moreover, viral RNA dependent RNA polymerase (RdRp) colocalizes with and co-immunoprecipitates with the P-body protein Lsm1p, suggesting that P-bodies may participate in viral replication. Remarkably, the accumulation BMV gRNA in P-bodies is dependent on cis-elements that have been demonstrated to play critical roles in viral RNA replication.The identification of P-bodies as sites of accumulation of viral gRNA and viral proteins of both retro-virus like elements and positive-stranded RNA viruses, expands the list of important biological roles played by P-bodies. Since P-body proteins and structure are highly conserved, these findings imply that Pbodies will be important for other RNA viruses.
|
35 |
Understanding the mechanisms of entry of Jaagsiekte sheep retrovirusBertrand, Pascale, 1983- January 2007 (has links)
Jaagsiekte sheep retrovirus (JSRV) is a simple betaretrovirus that causes a contagious lung adenocarcinoma in sheep. One unique feature of JSRV is that its envelope (Env) glycoprotein functions as an active oncogene that induces oncogenic transformation in vitro and in vivo. While oncogenesis by JSRV Env protein has been extensively studied, the entry mechanism of JSRV has not been investigated. In this study, we showed that JSRV entry was specifically inhibited by lysosomotropic agents and bafilomycin Al (BafAl), indicating that JSRV is pH-dependent. Interestingly, oncoretroviral pseudotypes bearing JSRV Env protein were not inactivated by an acidic pH treatment, suggesting that additional factors besides low pH are involved in JSRV entry. Indeed, we found that JSRV entry was also blocked by dominant-negative mutants of dynamin and caveolin, raising the possibility that JSRV may use a dynamin-dependent, caveolae-associated pathway for entry. To determine a possible role of JSRV receptor, hyaluronidase 2 (Hyal2), in JSRV entry, we replaced the glycosylphosphatidyl-inositol (GPI) anchor of Hyal2 with the membrane-spanning domain and cytoplasmic tail of vesicular stomatitis virus G protein (VSV-G). We showed that although the transmembrane version of Hyal2 functioned efficiently as a JSRV receptor, JSRV entry mediated by the mutated Hyal2 was no longer inhibited by lysosomotropic agents and BafAl. Taken together, we conclude that JSRV entry is pH-dependent, but appears to use a non-classical pathway for entry. JSRV may provide an exciting novel model for a better understanding of retrovirus entry.
|
36 |
Molecular characterisation of endogenous loci related to jaagsiekte sheep retrovirus.Hallwirth, Claus Volker. January 2007 (has links)
The study of retroviruses has been of pivotal significance to the field of biomedical
science, where it has provided fundamental insights into the processes underlying both
viral and non-viral carcinogenesis. Ovine pulmonary adenocarcinoma (OP A), a contagious
lung cancer of sheep and goats, has emerged over the past three decades as an invaluable
model of human epithelial cancers. It is one of the very few animal models of retrovirus induced neoplasia of epithelial tissues,
whereas most other such animal models of human
cancers pertain to the haematopoietic system. OP A represents a unique, naturally
occurring, inducible, outbred animal model of peripheral lung carcinomas, and is caused
by a betaretrovirus - jaagsiekte sheep retrovirus (JSRV) - that is receiving increasing
attention in the fields of retrovirology and lung cancer research.
JSRV exists in two highly homologous, yet molecularly distinct forms. The first is an
exogenous form of the virus that is transmitted horizontally from one animal to another.
This form is infectious and the direct cause of OP A. The other is an endogenous form, 15
to 20 proviral copies of which reside benignly in the genome of sheep and are transmitted
vertically from one generation to the next. At the time this study commenced, no
knowledge existed regarding the underlying pathogenic mechanism by which JSRV causes
OPA. Even though the nucleotide sequence of exogenous JSRV had been elucidated seven
years earlier, only limited sequence information was available on endogenous JSRVs. With
a view towards identifying genetic regions or elements within exogenous JSRV that could
potentially be implicated in its pathogenic function, this study began with the cloning of
the first three full-length endogenous JSRV loci ever isolated from sheep. The DNA
sequences of these full-length endogenous JSRV loci were determined and
comprehensively analysed. Comparison with exogenous JSRV isolates revealed that the
two forms of the virus are highly homologous, yet can be consistently distinguished in
three short regions within the coding genes. Two of these reside in the gag gene, and one at
the end of the env gene. These regions were named the variable regions (VRs) of sheep
betaretroviruses.
The JSRV VR3 in env was linked by our collaborators to the virus's ability to transform
cells in tissue culture. The effects and biological significance of VRI and VR2 in gag are
subtler and more difficult to determine. After identifying these regions, it became the
objective of this study to develop relevant molecular tools that could be used to discern the
significance of these variable regions in vivo, and to characterise these tools in vitro to
assess their suitability for in vivo studies. The development of these tools entailed the
design of a novel strategy that was implemented to precisely substitute the endogenous
VRI and VR2 (individually and in combination) into an infectious molecular clone of
exogenous JSRV. These chimeric constructs were shown to support retroviral particle
release into the supernatant of transiently transfected cells in tissue culture. These particles
were confirmed by independent experiments to have arisen specifically from transfection
with the chimeric clones. Finally, the particles were shown to be capable of infecting
cultured cells and of productively integrating their genomes into those of their host cells,
rendering these particles fully competent retroviruses that can be used in the context of in
vivo studies to determine the biological significance of VRI and VR2.
This study has made a significant contribution to the further development of the OP A /
JSRV model system of human epithelial lung cancers. It has also led to the design of a
molecular substitution strategy that can be adapted to introduce any genetic region into a
cloned DNA construct, regardless of the degree - or lack of interrelation - of the two DNA
sequences, thereby creating a highly versatile molecular biological tool. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.
|
37 |
Search for the retroviral origin of a novel murine spontaneous lymphomaKercher, Lisa A. January 1994 (has links)
It is known that many types of leukemias and lymphomas are of viral origin. A new strain of immunologically deficient mice, the BALB/c x C57B1/6 beige nude mice, has been observed to develop spontaneous lymphomas of unknown origin at a high frequency. It is possible the tumors originate from a retroviral infection, which we attempted to show by detection of viral reverse transcriptase (RT) activity. We measured the (RT) activity in the supernatants of cocultures from the spleen and lymph node tissues of the beige nude animals by two methods, tritiated thymidine triphosphate incorporation in a standard RT assay, and the commercially available RT-DetectTM (DuPont) method. Of all supernatants tested, none showed a significant amount of RT activity compared with a cell line that was known to be actively producing the retrovirus MuLV. Upon electron microscopic analysis of the tumor-like cells grown in coculture, no viral particles were observed. Flow cytometric analysis of the tumor-like cells showed two general phenotypes; one predominately of a helper T cell type, and the other of a less differentiated immature thymocyte type. / Department of Biology
|
38 |
Assessment and Analysis of the Restriction of Retroviral Infection by the Murine APOBEC3 ProteinAydin, Halil Ibrahim 26 August 2011 (has links)
Human APOBEC3 proteins are host-encoded intrinsic restriction factors that can prevent the replication of a broad range of human and animal retroviruses such as HIV, SIV, FIV, MLVs and XMRV. The main pathway of the restriction is believed to occur as a result of the cytidine deaminase activity of these proteins that converts cytidines into uridines in single-stranded DNA retroviral replication intermediates. Uridines in these DNA intermediates disrupt the viral replication cycle and also alter retrovirus infectivity because of the C-to-T transition mutations generated as a result of the deaminase activity on the minus strand DNA. In addition, human APOBEC3 proteins also exhibit a deamination-independent pathway to restrict retroviruses that is not currently well understood. Although the restriction of retroviruses by human APOBEC3 proteins has been intensely studied in vitro, our understanding of how the murine APOBEC3 (mA3) protein restricts retroviruses and/or prevents zoonotic infections in vivo is very limited. In contrast to humans and primates that have 7 APOBEC3 genes, mice have but a single copy. My study of the function and structure of mA3 revealed that it has an inverted functional organization for cytidine deamination in comparison to the human A3G catalytic sites. I have also found that disruption of the integrity of either of these catalytic sites substantially impedes restriction of HIV and MLV. Interestingly, our data shows that mA3 induces a significant decrease in retroviral activity of HIV and MLVs by exploiting both deamination-dependent and -independent pathways. However, the deaminase activity of mA3 is essential to confer long-term restriction of retroviral infection. My observations suggest that mA3 has dual activities, both deamination-dependent and -independent, that work cooperatively to restrict a broad range of human and animal retroviral pathogens. In the context of the intrinsic immune system, APOBEC3 proteins provide a powerful block to the transmission of retroviral pathogens that very few have found ways to evade.
|
39 |
Retrovirus-mediated Gene Therapy For Farber DiseaseRamsubir, Shobha 01 August 2008 (has links)
Farber disease is a rare lysosomal storage disease (LSD) caused by a deficiency of acid ceramidase (AC). Patients show a classic triad of symptoms including subcutaneous granulomas, laryngeal involvement and painful swollen joints. The most common and severe form has neurological manifestations and patients typically die by the age of two. Current treatment consists of symptomatic supportive care and allogeneic bone marrow transplantation (BMT). However, BMT has shown limited success. Gene therapy has previously been shown to be a promising treatment strategy for monogenetic diseases and has the potential to treat the underlying cause of the disease. Presented here is the first report of in vivo testing of retrovirus-mediated gene therapy strategies for the treatment of Farber disease. Retroviral vectors were engineered to overexpress AC and a cell surface marker, human CD25. Transduction with these viral vectors corrected the enzymatic defect in Farber patient cells and in vivo administration of the lentiviral vector led to long-term expression of the marking transgene as well as increased AC expression in the liver. To determine the effect of over-expression of AC, human CD34+ cells were transduced and transplanted into NOD/SCID animals. It was found that transgene-expressing cells could reconstitute the host. To address the neurological manifestations of Farber disease, vascular endothelial growth factor (VEGF) was investigated as an agent to transiently open the blood brain barrier for entry of lentivirus. It was found that in addition to increasing the amount of therapeutic virus in the brain, VEGF treatment also increased transduction in other organs. Further, to address the concerns of insertional mutagenesis associated with using integrating vectors, an immunotoxin-based strategy was developed as a safety system to clear transduced cells. It was found that a CD25-targeted immunotoxin could eliminate both transduced hematopoietic cells as well as tumor cells over-expressing CD25. This strategy can be employed following gene therapy should an unwanted proliferative event occur. Together, these studies represent considerable advances towards the development of a cure for Farber disease, demonstrating both therapeutic potential and also containing a built-in safety system.
|
40 |
The abundance and diversity of endogenous retroviruses in the chicken genomeMason, Andrew Stephen January 2018 (has links)
Long terminal repeat (LTR) retrotransposons are autonomous eukaryotic repetitive elements which may elicit prolonged genomic and immunological stress on their host organism. LTR retrotransposons comprise approximately 10 % of the mammalian genome, but previous work identified only 1.35 % of the chicken genome as LTR retrotransposon sequence. This deficit appears inconsistent across birds, as studied Neoaves have contents comparable with mammals, although all birds contain only one LTR retrotransposon class: endogenous retroviruses (ERVs). One group of chicken-specific ERVs (Avian Leukosis Virus subgroup E; ALVEs) remain active and have been linked to commercially detrimental phenotypes, such as reduced lifetime egg count, but their full diversity and range of phenotypic effects are poorly understood. A novel identification pipeline, LocaTR, was developed to identify LTR retrotransposon sequences in the chicken genome. This enabled the annotation of 3.01 % of the genome, including 1,073 structurally intact elements with replicative potential. Elements were depleted within coding regions, and over 40 % of intact elements were found in clusters in gene sparse, poorly recombining regions. RNAseq analysis showed that elements were generally not expressed, but intact transcripts were identified in four cases, supporting the potential for viral recombination and retrotransposition of non-autonomous repeats. LocaTR analysis of seventy-two additional sauropsid genomes revealed highly lineage-specific repeat content, and did not support the proposed deficit in Galliformes. A second, novel bioinformatic pipeline was constructed to identify ALVE insertions in whole genome resequencing data and was applied to eight elite layer lines from Hy-Line International. Twenty ALVEs were identified and diagnostic assays were developed to validate the bioinformatic approach. Each ALVE was sequenced and characterised, with many exhibiting high structural intactness. In addition, a K locus revertant line was identified due to the unexpected presence of ALVE21, confirmed using BioNano optic maps. The ALVE identification pipeline was then applied to ninety chicken lines and 322 different ALVEs were identified, 81 % of which were novel. Overall, broilers and non-commercial chickens had a greater number of ALVEs than were found in layers. Taken together, these two analyses have enabled a thorough characterisation of both the abundance and diversity of chicken ERVs.
|
Page generated in 0.0539 seconds