1 |
Imaging bone fractures using ultrasonic scattered wavefields: numerical and in-vitro studiesLi, Hongjiang Unknown Date
No description available.
|
2 |
Imaging bone fractures using ultrasonic scattered wavefields: numerical and in-vitro studiesLi, Hongjiang 11 1900 (has links)
Ultrasound has been widely used in medical diagnostic imaging to image soft tissues. Compared with other methods, ultrasound is superior with no ionizing-radiation, easy portability, low cost, and the capability to provide elasticity information. Conventional ultrasound images provide distorted image information when the ultrasound beam is not normal to the bone structures. In this thesis, we present two imaging algorithms: reverse time migration (RTM) and split-step Fourier migration (SSFM), to image long bones using ultrasound. The methods are tested using simulated data sets. The reconstructed images show accurate cortical thickness measurement and provide the correct fracture dip. The images also clearly illustrate the healing process of a 1-mm wide crack with different in-filled tissue velocities simulating fracture healing. Two in-vitro examples using fractured bones are also presented. The study has showed that the migration methods have great potential to quantify bone fractures and monitor the fracture healing process.
|
3 |
Multisource Least-squares Reverse Time MigrationDai, Wei 12 1900 (has links)
Least-squares migration has been shown to be able to produce high quality migration images, but its computational cost is considered to be too high for practical imaging. In this dissertation, a multisource least-squares reverse time migration algorithm (LSRTM) is proposed to increase by up to 10 times the computational efficiency by utilizing the blended sources processing technique.
There are three main chapters in this dissertation.
In Chapter 2, the multisource LSRTM algorithm is implemented with random time-shift and random source polarity encoding functions. Numerical tests on the 2D HESS VTI data show that the multisource LSRTM algorithm suppresses migration artifacts, balances the amplitudes, improves image resolution, and reduces crosstalk noise associated with the blended shot gathers. For this example, multisource LSRTM is about three times faster than the conventional RTM method. For the 3D example of the SEG/EAGE salt model, with comparable computational cost, multisource LSRTM produces images with more accurate amplitudes, better spatial resolution, and fewer migration artifacts compared to conventional RTM. The empirical results suggest that the multisource LSRTM can produce more accurate reflectivity images than conventional RTM does with similar or less computational cost. The caveat is that LSRTM image is sensitive to large errors in the migration velocity model.
In Chapter 3, the multisource LSRTM algorithm is implemented with frequency selection encoding strategy and applied to marine streamer data, for which traditional random encoding functions are not applicable. The frequency-selection encoding functions are delta functions in the frequency domain, so that all the encoded shots have unique non-overlapping frequency content. Therefore, the receivers can distinguish the wavefield from each shot according to the frequencies. With the frequency-selection encoding method, the computational efficiency of LSRTM is increased so that its cost is comparable to conventional RTM in the examples of the Marmousi2 model and a field data set from the Gulf of Mexico. With more iterations, the LSRTM image quality is further improved. The numerical results suggest that LSRTM with frequency-selection is an efficient method to produce better reflectivity images than conventional RTM.
In Chapter 4, I present an interferometric method for extracting the diffraction signals that emanate from diffractors, also denoted as seismic guide stars. The signal-to-noise ratio of these interferometric diffractions is enhanced by √N, where N is the number of source points coincident with the receiver points. Thus, diffractions from subsalt guide stars can then be rendered visible and so can be used for velocity analysis, migration, and focusing of subsalt reflections. Both synthetic and field data records are used to demonstrate the benefits and limitations of this method.
|
4 |
Imagerie de milieux complexes par équations d’ondes élastiques / Imaging of complex media with elastic wave equationsLuquel, Jérôme 16 April 2015 (has links)
L’industrie pétrolière s’intéresse désormais à des régions de la terre de plus en plus difficiles d’accès et il est essentiel de proposer des techniques permettant de garantir l’efficaité d’un forage. Parmi ces techniques, la Reverse Time Migration (RTM) est connue pour sa précision. Elle utilise les ondes réfléchies pour reconstruire une carte du sous-sol représentant les interfaces géophysiques. Elle peut être décrite en trois étapes : (i) propager le champs émis par les sources durant la campagne d’acquisition; (ii) pour chaque source, propager le champ enregistré par les récepteurs; (iii) obtenir une image du sous-sol en appliquant une condition d’imagerie à chaque pas de temps et pour chaque source. Cette technique requiert de très grosses capacités de calcul et il est encore difficile d’imager des milieux réalistes 3D, même avec l’aide du calcul haute performance. Nous avons choisi la méthode de Galerkine discontinue pour modéliser la partie propagation car elle permet d’obtenir des solutions précises et est adaptable au calcul parallèle. La quantité d’information à sauvegarder pour faire une corrélation étant importante, on se doit de trouver un algorithme de calcul d’images du sous-sol réduisant ce coût. Nous avons utilisé l’algorithme de Griewank, appelé “Optimal Checkpointing”. Ce problème de coût étant réglé, on se doit de considérer l’efficacité des ondes élastiques incluant des champs multiples pour améliorer la précision de l’image. La condition traditionnelle de J. Claerbout ne prend pas en compte les conversions d’ondes, et n’est alors surtout utile que dans le cas acoustique. De plus, les ondes P et S interagissant entre elles, il est intéressant de trouver une condition d’imagerie utilisant ce fait. Cela a été abordé dans le cadre de la méthode de l’état adjoint dans les travaux de A. Tarantola et J. Tromp et ce travail en propose utilisation dans le cadre de la RTM. Nous proposons une nouvelle condition d’imagerie prenant en compte les paramètres élastiques du milieu considéré et permettant de supprimer les artefacts numériques. Nous illustrons les images sur des cas industriels / Since a large number of sedimentary basins have been explored, oil exploration is now interested in investigating regions of the Earth which are hostile. Among existing methods for seismic imaging, Reverse Time Migration (RTM) is a technique known by industry to be efficient. The RTM uses reflected waves and is able to construct a map of the subsurface which is depicted by the interfaces limiting the geophysical layers. The algorithm of RTM can be described as a three-step procedure: (i) compute the wavefields emitted by the sources used during the seismic acquisition campaign; (ii) for each source, compute the so-called “backpropagated wavefield”, which is the wavefield obtained by using as sources the signals recorded at the receivers during the acquisition campaign and by reversing the time; (iii) get an image of the subsurface by applying an imaging condition combining the propagated and the backpropagated wavefields at each time step of the numerical scheme and for each source. This technique is computationnaly intensive and it is still difficult to image realistic 3D elastic media, even with the help of HPC. We have thus chosen to consider high-order Discontinuous Galerkin Methods which are known to be well-adapted to provide accurate solutions based upon parallel computing. As we need to correlate a lot of wavefields, we need to find an algorithm reducing the CPU time and the storage : this is the Griewank’s algorithm, so-called “Optimal Checkpointing”. The traditional imaging condition, proposed by J. Claerbout, does not take wave conversions into account and since P-wave and S-wave interact with each other, it might be relevant to use an imaging condition including these interactions. In fact, this has been done successfully by A. Tarantola and J. Tromp for seismology applications based upon the inversion of the global Earth. In this work, we propose a new imaging condition using the elastic parameters which attenuates numerical artifacts. We illustrate the properties of the new imaging condition on industrial benchmarks like the Marmousi model. In particular, we compare the new imaging condition with other imaging conditions by using as criteria the quality of the image.
|
5 |
Implementa??o do algoritmo (RTM) para processamento s?smico em arquiteturas n?o convencionaisLima, Igo Pedro de 16 June 2014 (has links)
Made available in DSpace on 2014-12-17T14:08:57Z (GMT). No. of bitstreams: 1
IgoPL_DISSERT.pdf: 1338632 bytes, checksum: 5c21a0cb714155a0e215d803dca007ce (MD5)
Previous issue date: 2014-06-16 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / With the growth of energy consumption worldwide, conventional reservoirs, the
reservoirs called "easy exploration and production" are not meeting the global energy
demand. This has led many researchers to develop projects that will address these needs,
companies in the oil sector has invested in techniques that helping in locating and drilling
wells. One of the techniques employed in oil exploration process is the reverse time migration
(RTM), in English, Reverse Time Migration, which is a method of seismic imaging that
produces excellent image of the subsurface. It is algorithm based in calculation on the wave
equation. RTM is considered one of the most advanced seismic imaging techniques. The
economic value of the oil reserves that require RTM to be localized is very high, this means
that the development of these algorithms becomes a competitive differentiator for companies
seismic processing. But, it requires great computational power, that it still somehow harms its
practical success. The objective of this work is to explore the implementation of this
algorithm in unconventional architectures, specifically GPUs using the CUDA by making an
analysis of the difficulties in developing the same, as well as the performance of the algorithm
in the sequential and parallel version / Com o crescimento do consumo energ?tico em todo o mundo, os reservat?rios
convencionais, chamados de reservat?rios de f?cil explora??o e produ??o n?o est?o
atendendo a demanda energ?tica mundial. Isso tem levado muitos pesquisadores a
desenvolver trabalhos que venham sanar essas car?ncias. Empresas do setor petrol?fero tem
investido em t?cnicas que ajudem na localiza??o e perfura??o de po?os. Uma das t?cnicas
empregadas no processo de explora??o de petr?leo ? a Migra??o Reversa no Tempo (RTM),
do ingl?s, Reverse Time Migration, que ? um m?todo de imageamento s?smico que produz
excelente imagem de subsuperf?cie. ? um algoritmo baseado no c?lculo da equa??o de onda.
A RTM ? considerada uma das t?cnicas mais avan?adas de imageamento s?smico. O valor
econ?mico das reservas de petr?leo que requerem RTM para ser localizada ? muito alto, isso
significa que o desenvolvimento desses algoritmos torna-se um diferencial competitivo para
as empresas de processamento s?smico. No entanto, o mesmo requer grande poder
computacional que, de alguma forma, ainda prejudica o seu sucesso pr?tico. Assim, o objetivo
deste trabalho ? explorar a implementa??o desse algoritmo em arquiteturas n?o
convencionais, especificamente as GPUs, utilizando a plataforma CUDA, fazendo uma
an?lise das dificuldades no desenvolvimento do mesmo, bem como a performance do
algoritmo na vers?o sequencial e paralela
|
6 |
Continental Arc Processes in British Columbia and Earthquake Processes in Virginia: Insights from Seismic ImagingWang, Kai 07 February 2014 (has links)
Travel times from a refraction and wide-angle reflection seismic survey across the Coast Plutonic Complex and Stikine terrane of British Columbia were inverted to derive two dimensional P and S-wave seismic velocity models of the crust and uppermost mantle. A felsic upper crust and a felsic to intermediate middle crust are observed in both the batholith complex and the accreted Stikine island arc terrane. The P and S wave models demonstrate a high-velocity (P 7.0 km/s, S 3.8 km/s) layer in the lower crust beneath the youngest (late Cretaceous to Eocene) portion of the continental arc complex. In contrast, the lower crust under the Stikine terrane has lower velocities consistent with amphibolite or other hydrated mafic rocks. The Moho is at ~35 km depth under the Stikine terrane, deepens to ~38 km beneath the youngest portion of the arc, then shallows towards the coast. The high velocity zone under the younger portion of the Coast Plutonic Complex has a 1.81 Vp/Vs ratio and is interpreted to have a bulk composition of mafic garnet granulite. This garnet granulite and large volumes of granodiorite-dominated melt were created by arc dehydration melting of amphibolite (or hydrated gabbro) in the pre-existing lower crust
Reverse time migration method was applied to image aftershocks recorded by a dense array deployed after the 2011 Virginia earthquake. Events as tiny as magnitude -2 were successfully imaged as point sources. The propagation of energy release as a function of time and space was observed for events larger than magnitude 2.5. Spatial resolution of the images was ~200 m, which synthetic data tests show was primarily limited by the temporal sampling rate. Improved temporal and spatial sampling could produce images with sharper resolution. / Ph. D.
|
7 |
A two-way approach to adapt small-scale laboratory experiments and corresponding numerical simulations of offshore seismic surveys / Une approche conjointe pour adapter les expérimentations de laboratoire à échelle réduite aux simulations numériques correspondantes de campagnes de sismique marineSolymosi, Bence 20 November 2018 (has links)
Les méthodes numériques sont largement utilisées en exploration sismique pour simuler la propagation des ondes et pour le post-traitement des données sismiques avant l'interprétation géologique/géophysique. Les algorithmes sont basés sur différentes hypothèses pour réduire le coût de calcul au détriment de la simplification des modèles et/ou des phénomènes physiques. En raison de leur rôle essentiel en exploration géophysique, la précision des simulations numériques présente un fort intérêt, notamment dans le cas de configurations géologiques réalistes. La comparaison directe des résultats numériques entre eux dans des configurations synthétiques peut avoir des limites, car il peut être difficile de déterminer celui qui donne la meilleure approximation de la solution physique inconnue. Comme dans la réalité le sous-sol n'est jamais connu avec précision, il est également difficile de comparer les résultats synthétiques aux données sismiques réelles acquises in situ. Par conséquent, il y a un grand intérêt à utiliser des mesures de laboratoire sur des modèles physiques aux propriétés connues pour valider la précision des outils numériques. Avant de pouvoir comparer avec précision les mesures et les simulations, nous devons tout d’abord établir un cadre comparatif avec une approche conjointe adaptée aux expériences de laboratoire et à la modélisation numérique. C’est précisément l'objectif de cette thèse. Ainsi, le cadre reproduit d'abord les mesures sismiques marines dans des conditions de laboratoire en utilisant de modèles à échelle réduite, puis les outils numériques sont adaptés à la reconstruction précise des expériences. / Numerical methods are widely used in seismic exploration to simulate wave propagation and to post-process the recorded seismic data before the geologic/geophysical interpretation. The algorithms are based on various assumptions to reduce the computational cost at the expense of simplifying the models and/or the physical phenomena. Because of their essential role in exploration geophysics, the accuracy of the numerical simulations is of particular interest, especially in the case of realistic geologic setups. The direct comparison of the numerical results with each other in synthetic configurations can have limitations, as it can be difficult to determine the one that gives the best approximation of a physically unknown solution. Because in real life the subsurface is never accurately known, it is also difficult to compare the synthetic results to any seismic data set from field measurements. Therefore there is a strong interest in using laboratory measurements on physical models of known geometries to benchmark the numerical tools. Before comparing measurements and simulations with confidence at high accuracy, we first need to establish a comparative framework with a jointly-adapted approach to both the laboratory experiments and the numerical modeling. This challenging task is the goal of this thesis. Thus, the framework first reproduces offshore seismic measurements in laboratory conditions with the help of small-scale models, and then the numerical tools are adapted to the accurate synthetic reconstruction of the experiments.
|
8 |
Analysis of GPU-based convolution for acoustic wave propagation modeling with finite differences: Fortran to CUDA-C step-by-stepSadahiro, Makoto 04 September 2014 (has links)
By projecting observed microseismic data backward in time to when fracturing occurred, it is possible to locate the fracture events in space, assuming a correct velocity model. In order to achieve this task in near real-time, a robust computational system to handle backward propagation, or Reverse Time Migration (RTM), is required. We can then test many different velocity models for each run of the RTM. We investigate the use of a Graphics Processing Unit (GPU) based system using Compute Unified Device Architecture for C (CUDA-C) as the programming language. Our preliminary results show a large improvement in run-time over conventional programming methods based on conventional Central Processing Unit (CPU) computing with Fortran. Considerable room for improvement still remains. / text
|
9 |
Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration. / High Order time and space schemes for the first order wave equation. Application to the Reverse Time Migration.Ventimiglia, Florent 05 June 2014 (has links)
L’imagerie du sous-sol par équations d’onde est une application de l’ingénierie pétrolière qui mobilise des ressources de calcul très importantes. On dispose aujourd’hui de calculateurs puissants qui rendent accessible l’imagerie de régions complexes mais des progrès sont encore nécessaires pour réduire les coûts de calcul et améliorer la qualité des simulations. Les méthodes utilisées aujourd’hui ne permettent toujours pas d’imager correctement des régions très hétérogènes 3D parce qu’elles sont trop coûteuses et /ou pas assez précises. Les méthodes d’éléments finis sont reconnues pour leur efficacité à produire des simulations de qualité dans des milieux hétérogènes. Dans cette thèse, on a fait le choix d’utiliser une méthode de Galerkine discontinue (DG) d’ordre élevé à flux centrés pour résoudre l’équation des ondes acoustiques et on développe un schéma d’ordre élevé pour l’intégration en temps qui peut se coupler avec la technique de discrétisation en espace, sans générer des coûts de calcul plus élevés qu’avec le schéma d’ordre deux Leap-Frog qui est le plus couramment employé. Le nouveau schéma est comparé au schéma d’ordre élevé ADER qui s’avère plus coûteux car il requiert un plus grand nombre d’opérations pour un niveau de précision fixé. De plus, le schéma ADER utilise plus de mémoire, ce qui joue aussi en faveur du nouveau schéma car la production d’images du sous-sol consomme beaucoup de mémoire et justifie de développer des méthodes numériques qui utilisent la mémoire au minimum. On analyse également la précision des deux schémas intégrés dans un code industriel et appliqués à des cas test réalistes. On met en évidence des phénomènes de pollution numériques liés à la mise en oeuvre d'une source ponctuelle dans le schéma DG et on montre qu'on peut éliminer ces ondes parasites en introduisant un terme de pénalisation non dissipatif dans la formulation DG. On finit cette thèse en discutant les difficultés engendrées par l'utilisation de schémas numériques dans un contexte industriel, et en particulier l'effet des calculs en simple précision. / Oil engineering uses a wide variety of technologies including imaging wave equation which involves very large computing resources. Very powerful computers are now available that make imaging of complex areas possible, but further progress is needed both to reduce the computational cost and improve the simulation accuracy. The current methods still do not allow to image properly heterogeneous 3D regions because they are too expensive and / or not accurate enough. Finite element methods turn out to be efficient for producing good simulations in heterogeneous media. In this thesis, we thus chose to use a high order Discontinuous Galerkin (DG) method based upon centered fluxes to solve the acoustic wave equation and developed a high-order scheme for time integration which can be coupled with the space discretization technique, without generating higher computational cost than the second-order Leap Frog scheme which is the most widely used . The new scheme is compared to the high order ADER scheme which is more expensive because it requires a larger number of computations for a fixed level of accuracy. In addition, the ADER scheme uses more memory, which also works in favor of the new scheme since producing subsurface images consumes lots of memory and justifies the development of low-memory numerical methods. The accuracy of both schemes is then analyzed when they are included in an industrial code and applied to realistic problems. The comparison highlights the phenomena of numerical pollution that occur when injecting a point source in the DG scheme and shows that spurious waves can be eliminated by introducing a non-dissipative penalty term in the DG formulation. This work ends by discussing the difficulties induced by using numerical methods in an industrial framework, and in particular the effect of single precision calculations.
|
10 |
Escalabilidade Paralela de um Algoritmo de Migra??o Reversa no Tempo (RTM) Pr?-empilhamento / PARALLEL SCALABILITY OF A PRESTACK REVERSE TIME MIGRATION (RTM) ALGORITHMRos?rio, Desnes Augusto Nunes do 21 December 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:09Z (GMT). No. of bitstreams: 1
DesnesANR_DISSERT.pdf: 3501359 bytes, checksum: 5155a508018af1e52dae20205b8f726b (MD5)
Previous issue date: 2012-12-21 / The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface.
Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures.
One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs.
However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods.
Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors / A s?smica ? uma ?rea de extrema import?ncia na geof?sica. Associada principalmente ? explora??o de petr?leo, essa linha de pesquisa concentra boa parte de todo o investimento realizado nesta grande ?rea. A aquisi??o, o processamento e a interpreta??o dos dados s?smicos s?o as partes que comp?em um estudo s?smico. O processamento s?smico em especial tem como objetivo ? obten??o de uma imagem que represente as estruturas geol?gicas em subsuperf?cie.
O processamento s?smico evoluiu significativamente nas ?ltimas d?cadas devido ?s demandas da ind?stria petrol?fera, e aos avan?os tecnol?gicos de hardware que proporcionaram maiores capacidades de armazenamento e processamento de informa??es digitais, que por sua vez possibilitaram o desenvolvimento de algoritmos de processamento mais sofisticados, tais como os que utilizam arquiteturas paralelas de processamento.
Uma das etapas importantes contidas no processamento s?smico ? o imageamento. A migra??o ? uma das t?cnicas usadas para no imageamento com o objetivo de obter uma se??o s?smica que represente de forma mais precisa e fiel as estruturas geol?gicas. O resultado da migra??o ? uma imagem 2D ou 3D na qual ? poss?vel a identifica??o de falhas e domos salinos dentre outras estruturas de interesse, poss?veis reservat?rios de hidrocarbonetos.
Entretanto, uma migra??o rica em qualidade e precis?o pode ser um processo demasiadamente longo, devido ?s heur?sticas matem?ticas do algoritmo e ? quantidade extensa de entradas e sa?das de dados envolvida neste processo, podendo levar dias, semanas e at? meses de execu??o ininterrupta em supercomputadores, o que representa grande custo computacional e financeiro, o que pode inviabilizar a aplica??o desses m?todos.
Tendo como objetivo a melhoria de desempenho, este trabalho realizou a paraleliza??o do n?cleo de um algoritmo de Migra??o Reversa no Tempo (RTM - do ingl?s: Reverse Time Migration), utilizando o modelo de programa??o paralela OpenMP (do ingl?s: Open Multi-Processing), devido ao alto esfor?o computacional demandado por essa t?cnica de migra??o. Al?m disso, foram realizadas an?lises de desempenho tais como de speedup, efici?ncia, e, por fim, a identifica??o do grau de escalabilidade algor?tmica com rela??o ao avan?o tecnol?gico esperado para futuros processadores
|
Page generated in 0.1261 seconds