• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 29
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Rhyolitic volcanism in the Onverwacht Group, Barberton Greenstone Belt

Diergaardt, Byron Nico 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The source of the K2O in the K2O-rich ~3.45 Ga felsic intrusive rocks of the H6 unit in the Hooggenoeg Formation of the Onverwacht Group in the Barberton Granite Greenstone Terrain (BGGT) is examined in this study. This is of particular research interest because the Paleoarchaean rock record is considered to lack K2O-rich magmatic rocks. Previous studies on the felsic igneous rocks of the H6 unit have proposed that these rhyolites are K-metasomatised eruptive equivalents of the sodium-rich ~3.45 Ga TTGs of the BGGT and that the K-feldspar crystals in the rocks formed as a consequence of subsolidus replacement of plagioclase by K-feldspar. Furthermore, the timing of K-metasomatism has previously been related to the formation of the Buck Ridge Chert (BRC), which overlies the H6 unit. However, it has recently been demonstrated from granitic clasts in the conglomerate layer at the base of the Moodies sucession that K2O-rich magmatic rocks formed concurrently with TTG magmas during each of three episodes of TTG magmatism observed in the BGGT. Consequently, the hypothesis of a metasomatic origin for the K2O-rich character of the felsic rocks of the H6 unit requires further examination. Previous studies of the chemistsry of felsic volcanic rocks within the H6 unit were based on relatively low numbers of samples. This study has examined a substantial set of the freshest material available. Two varieties of felsic volcanic rocks were identified; K2O-rich, CaO-poor, Na2O-poor rhyolites and Na2O-rich, CaO-poor, K2O-poor Na-rhyolites. The K2O- rich rhyolite variety is dominant. Consequently, it is possible that the K2O-rich character of these rocks represents a primary magmatic signature. However, this judgment is complicated by the presence of a greenschist-facies metamorphic overprint at 3.2 Ga, which has resulted in complete replacement of micrystalline groundmass and partial replacement of the phenocryst assemblages by greenschist- and sub-greenschist-facies mineral assemblages, which undoubtedly allowed possible shifts in chemical compositions In this thesis, I test the source of K2O in these rocks by using the porphyritic textures of the rocks as an indication of the primary composition of the magmas they were formed from. These textures are typically defined by K-feldspar or albite and quartz phenocrysts within a microcrystalline groundmass. The rocks containing albite are Na-rich (Na-rhyolites) whereas the rocks defined by K-feldspar phenocrysts are rhyolites. XRD study of the structural state of the K-feldspar phenocrysts in the rhyolites indicates that these crystals are orthoclase and intermediate microcline, i.e. medium temperature K-feldspar polymorphs. The modal proportions of K-feldspar, quartz and microcrystalline groundmass in the rhyolites were calculated by using image analysis software. The compositions of the feldspar minerals were determined by electron beam analysis. Minimum bulk rock K2O content of the rhyolites were calculated from the proportions of K-feldspar crystals and their compositions. Even where the proportion of K-feldspar phenocrysts is relatively low (~ 30%), the calculated minimum bulk-rock K2O content is still above 5 wt%. The HREE slope (GdN/LuN) of the felsic porphyritic rocks of the H6 rhyolites is similar to that of ~3.45 Ga TTG plutons and steeper than that of granitic clasts of identical age contained in the basal conglomerate of the Moodies Group. Hence this study has illustrated that the rhyolites of the H6 unit were primary K-feldspar-rich, K2O-rich magmas that formed contemporarily with the ~3.45 Ga TTGs. This implicitly means that rhyolitic volcanism was more wide spread than previously thought in the Paleoarchaean and that it occurred together with the intrusion of the ~3.45 Ga TTGs in the BGGT. / AFRIKAANSE OPSOMMING: Die bron van die K2O in die K2O-ryk ~ 3,45 Ga felsiese vulkaniese rotse van die H6-eenheid in die Hooggenoeg formasie van die Onverwacht Groep in die Barberton Graniet Groensteen Terrein (BGGT) is in hierdie studie ondersoek. Dit is van besondere navorsingsbelang omdat die Paleoargeïse gesteenterekord beskou word as vry van magmatiese K2O ryke gesteentes. Vorige studies oor die felsiese vulkaniese rotse van die H6 eenheid het voorgestel dat hierdie rioliete K-gemetasomatiese eruptiewe ekwivalente van die natrium-ryke ~ 3,45 Ga TTGs van die BGGT is en dat die K-veldspaat kristalle in die gesteentes gevorm is as gevolg van subsolidus vervanging van plagioklaas deur K-veldspaat. Verder is die tydsberekening van K-metasomatisme voorheen gekoppel aan die vorming van die Buck Ridge Chert (BRC) wat die felsiese H6 eenheid bedek. Dit is egter onlangs aangetoon dat K2O-ryke magmatiese rotse gelyktydig met TTG magmas gevorm is tydens elk van drie episodes van TTG magmatisme waargeneem in die BGGT. Gevolglik vereis die hipotese van 'n metasomatiese oorsprong vir die K2O-ryke karakter van die felsiese gesteentes van die H6 eenheid verdere ondersoek. Vorige studies van die felsiese vulkaniese gesteentechemie in die H6 eenheid is gebaseer op 'n relatief klein getal monsters. Hierdie studie het 'n aansienlike stel van die varsste materiaal beskikbaar vir analise ondersoek. Twee variëteite van peralumineuse felsiese vulkaniese gesteentes naamlik 'n K2O-ryk, CaO-arm, Na2O-arm rioliet en Na2O-ryk, CaO-arm, K2O-arm Na-rioliet. Die K2O-ryke rioliet variëteit is meer oorheersend as die Na-rioliete. Dit is dus moontlik dat die K2O-ryk karakter van hierdie rotse 'n primêre magmatiese kenmerke verteenwoordig. Hierdie uitspraak is egter bemoeilik deur die teenwoordigheid van 'n groenskisfasies metamorfe oorprint op 3,2 Ga, wat gelei het tot die volledige vervanging van mikrokrisstalyne grondmassa en gedeeltelike vervanging van fenokrist samestellings deur groenskis en sub-groenskisfasies minerale samestellings en wat ongetwyfeld toegelaat het vir 'n moontlike verskuiwing in chemiese samestelling. In hierdie tesis toets ek die bron van K2O in hierdie gesteentes deur gebruik te maak van die vulkaniese teksture van die gesteentes as 'n aanduiding van die primêre samestelling van die magmas waaruit hulle gevorm het. Hierdie teksture word gewoonlik gedefinieer deur K-veldspaat of albiet en kwarts fenokriste binne 'n grondmassa van wat vroeërglasoorblyfsels was. Die rotse wat albiet bevat is Na-ryk (Na-rioliete) terwyl die rotse gedefinieer deur K-veldspaat fenokriste rioliete is. XRD studie van die strukturele toestand van die K-veldspaat fenokriste in die rioliete dui aan dat hierdie kristalle ortoklaas en intermediêre mikroklien is, dit wil sê die hoër temperatuur K-veldspaat polimorfe. Die modale proporsies van K-veldspaat, kwarts en glasoorblyfsels in die rioliete is akkuraat bereken deur gebruik te maak van beeld analise sagteware. Verder is die samestellings van die veldspaat minerale bepaal deur die elektronstraal analise. Minimum grootmaat rots K2O inhoud van die rioliet is berekén vanaf die fase verhouding van K-veldspaat en hul komposisies. Resultate dui daarop dat selfs waar die verhouding van K-veldspaat phenocrysts is relatief laag (~ 30%), die berekende minimum K2O grootmaat rots samestelling is nog steeds bo 5 wt%. Die REE-helling (GDN / Lun) van felsiese porphyritic rotse van die H6 is soortgelyke relatief tot die REE helling van ~ 3,45 Ga TTGs en steiler REE helling relatief tot granitiese klaste vervat in die basale konglomeraat van die Moodies-groep. Dus het hierdie studie getoon dat die rioliete van die H6-eenheid primêre K-veldspaat-ryke, K2O-ryke en peralumineuse magmas was wat gevorm is terselfdertyd met die ~3,45 Ga TTGs. Dit beteken implisiet dat riolitiese vulkanisme meer wyd verspreid was as wat voorheen gedink is in die Paleoargeïkum en dat dit tesame met die indringing van die ~ 3,45 Ga TTGs in die BGGT plaasgevind het.
52

Etude expérimentale in situ du dégazage d'un magma rhyolitique

Gondé, Charlotte 17 June 2008 (has links) (PDF)
La dynamique des éruptions volcaniques est régie principalement par le processus de dégazage des magmas. Nous avons reproduit expérimentalement les conditions de pression (P) et de température (T) subies par le magma au cours de sa remontée à la surface, afin d'étudier la vésiculation des volatils qui s'exsolvent du silicate liquide. Pour cela nous avons développé, utilisé et validé deux outils expérimentaux permettant l'observation en temps réel du dégazage magmatique. Nous avons utilisé des verres synthétiques hydratés, analogues de magmas rhyolitiques, mis en équilibre en P et T et auxquels nous avons fait subir des décompressions contrôlées provoquant le dégazage de l'eau. Une partie des expériences a été réalisée en cellule à enclume de diamants hydrothermale, permettant l'observation de la vésiculation, pour des conditions P-T de 8-12 kbar, 700-900°C et 7-18 %pds H2O dans le silicate liquide.Dans le cadre des améliorations technologiques associées à ce travail, nous avons participé à la mise au point de capteurs électriques implantés dans les diamants permettant la mesure de la température au plus près de l'échantillon. Les autres expériences ont été réalisées dans un autoclave à chauffage internet transparent permettant une observation de la chambre à échantillons pendant l'expérience, pour des conditions P-T de 1-3 kbar, 700-1000°C, avec 4-7 %pds H2O dans le liquide silicaté. Ces deux outils complémentaires nous ont permis de réaliser des expériences de décompression et d'observer in situ la nucléation, la croissance et la coalescence de bulles d'eau. Les résultats de ces expériences sont présentés et comparés. Leurs implications volcanologiques sont discutées.
53

Od uložení po kalderovou resurgenci: dynamika pyroklastických hustotních proudů zjištěná magnetickou anisotropií z Teplického ryolitu, Český masiv / From deposition to caldera resurgence: pyroclastic density current dynamics as revealed by magnetic anisotropy of the Teplice rhyolite, Bohemian Massif

Vitouš, Petr January 2020 (has links)
Better understanding of pyroclastic density current (PDC) dynamics is one of the key volcanological focuses, as PDCs represent one of the most life-threatening volcanic hazards. PDCs associated with explosive collapse calderas are difficult to observe and examine directly, and thus research of internal architecture of calderas and their PDC deposits is focused on extinct and partly eroded volcano-plutonic systems. Such a case is the Late-Carboniferous Altenberg-Teplice caldera in NW Bohemian Massif, which exposes a large body of ignimbrites (deposits of the PDC) called Teplice rhyolite (an intra-caldera fill). This body is well exposed on the southern flank of the Krušné hory/Erzgebirge Mts., mainly its members: Teichweg, Lugstein-Pramenáč, Vlčí kámen-Medvědí vrch and Přední Cínovec. As these ignimbrites appear macroscopically isotropic, I employed the Anisotropy of magnetic susceptibility (AMS) in order to quantify their internal structure. A total of 1232 specimens from 63 sampling stations were analyzed for the AMS, complemented by susceptibility vs. temperature variations and petrographic observations. Obtained AMS data, carried by a mixture of paramagnetic ferrosilicates and low-Ti titanomagnetite, indicate various processes recorded in ignimbrites. The relatively oldest and moderately welded Teichweg...
54

Od uložení po kalderovou resurgenci: dynamika pyroklastických hustotních proudů zjištěná magnetickou anisotropií z Teplického ryolitu, Český masiv / From deposition to caldera resurgence: pyroclastic density current dynamics as revealed by magnetic anisotropy of the Teplice rhyolite, Bohemian Massif

Vitouš, Petr January 2020 (has links)
Better understanding of pyroclastic density current (PDC) dynamics is one of the key volcanological focuses, as PDCs represent one of the most life-threatening volcanic hazards. PDCs associated with explosive collapse calderas are difficult to observe and examine directly, and thus research of internal architecture of calderas and their PDC deposits is focused on extinct and partly eroded volcano-plutonic systems. Such a case is the Late-Carboniferous Altenberg-Teplice caldera in NW Bohemian Massif, which exposes a large body of ignimbrites (deposits of the PDC) called Teplice rhyolite (an intra-caldera fill). This body is well exposed on the southern flank of the Krušné hory/Erzgebirge Mts., mainly its members: Teichweg, Lugstein-Pramenáč, Vlčí kámen-Medvědí vrch and Přední Cínovec. As these ignimbrites appear macroscopically isotropic, I employed the Anisotropy of magnetic susceptibility (AMS) in order to quantify their internal structure. A total of 1232 specimens from 63 sampling stations were analyzed for the AMS, complemented by susceptibility vs. temperature variations and petrographic observations. Obtained AMS data, carried by a mixture of paramagnetic ferrosilicates and low-Ti titanomagnetite, indicate various processes recorded in ignimbrites. The relatively oldest and moderately welded Teichweg...
55

Mid-Miocene Magmatic System Development in the Northwestern United States

Brueseke, Matthew Edward 12 April 2006 (has links)
No description available.
56

Vznik a vývoj davelského vulkanického komplexu / Petrogenesis and evolution of the Davle Volcanic Complex

Santolík, Václav January 2021 (has links)
The Davle Volcanic Complex (DVC) situated in the Teplá-Barrandian unit (TBU) of the Bohemian Massif, is considered as a Neoproterozoic-Cambrian magmatic arc that developed on the northern active margin of Gondwana supercontinent during Cadomian accretionary orogeny. This study combines data obtained from fieldwork, petrography, rock-forming mineral microanalysis, major and trace element analysis, Sr-Nd-Pb isotopic systematics and U-Pb zircon geochronology in order to reveal the petrogenesis and evolution of the DVC. At least three-stage metamorphism including Cadomian seafloor alteration, Variscan regional metamorphism as well as contact metamorphism related to the emplacement of the Central Bohemian Plutonic Complex affected the DVC. The studied rocks follow calc-alkaline trend whereas tholeiitic trend previously reported is rather related to younger magmatic events. The northern part of the DVC is dominated by felsic subvolcanic (plagiogranite), volcanic (dacite- rhyolite) and pyroclastic (dacitic-rhyolitic tuffs and breccias) rocks with a few outcrops of basaltic andesite-andesite pillow lavas documenting the subaqueous activity of the DVC. These rocks are Na-rich, but K-poor, the plagiogranite contains albite most likely primary in origin, and exhibit highly radiogenic εNd values (~ +6 to +11),...
57

40Ar/39Ar Dating of the Late Cretaceous / Datation 40Ar/39Ar du Crétacé Supérieur

Gaylor, Jonathan 11 July 2013 (has links)
Dans le cadre du projet Européen GTS Next, nous avons obtenu des nouvelles contraintes sur l’âge des étages du Crétacé Supérieur à partir de plusieurs techniques de géochronologie et d’interprétations stratigraphiques au Canada et au Japon. Dans le bassin sédimentaire du Western Interior Canada, nous proposons une nouvelle détermination de l’âge de la limite Crétacé - Tertiaire (K/Pg) enregistrée dans la coupe de Red Deer River (Alberta). Il a été possible de calibrer par cyclostratigraphie haute-résolution cette série sédimentaire fluviatile non-marine et d’identifier 11-12 cycles associés à la précession orbitale de la Terre. En considérant la technique 40Ar/39Ar intercalibrée avec la cyclostratigraphie, l’âge apparent de la base du chron magnétique C29r suggère que la limite K/Pg se trouve entre un minimum et un maximum de l’excentricité, avec une durée pour C29r de 66.30 ± 0.08 à 65.89 ± 0.08 Ma. En supposant que le cycle contenant le niveau de charbon soit associé à un cycle de précession, l’âge révisé de la limite Crétacé - Tertiaire est donné par la plus jeune des populations de zircon datée par U-Pb à 65.75 ± 0.06 Ma.La limite Campanien – Maastrichtien est également enregistrée dans ce même bassin canadien, et se trouve à environ 8 m sous le niveau de charbon No. 10 dans la formation de Horseshoe Canyon. L’étude cyclostratigraphique montre que le dépôt de cette séquence sédimentaire est directement influencé par les changements du niveau marin dû à la précession et dominés par l’excentricité Notre travail montre que la position de la limite Campanien – Maastrichtien dans ce bassin sédimentaire du Western Canada est placée à environ 2.5 cycles d’excentricité au dessus d’un niveau de téphra de la base de la coupe dont l’âge U-Pb est donné par la plus jeune population des zircons, et ~4.9 Myr avant la limite Crétacé - Tertiaire. Nous en déduisons un âge absolu de 70.65 ± 0.09 Ma pour la limite Campanien – Maastrichtien, ce qui est ~1.4 Myr plus jeune que les études récemment publiées.Enfin, à partir des isotopes du carbone et des foraminifères planctoniques enregistrés au centre d’Hokkaido (Pacifique Nord-Ouest), les coupes Crétacé du groupe Yezo ont été corrélée avec les séries européennes et nord-américaines. Plusieurs niveaux de téphra prélevés au sein des coupes de Kotanbetsu et Shumarinai ont été datés par les méthodes 40Ar/39Ar and U-Pb. Deux d’entre eux, placés de part et d’autre de la limite Turonien – Coniacien, ont donné des âges de 89.31 ± 0.11 et 89.57 ± 0.11 Ma, ce qui suggère un âge de 89.44 ± 0.24 Ma pour cette limite. En combinant notre résultat avec les âges récemment publiés, nous pouvons proposer un âge de 89.62 ± 0.04 Ma pour la limite Turonien – Coniacien. / As part of the wider European GTS Next project, I propose new constraints on the ages of the Late Cretaceous, derived from a multitude of geochronological techniques, and successful stratigraphic interpretations from Canada and Japan. In the Western Canada Sedimentary Basin, we propose a new constraint on the age of the K/Pg boundary in the Red Deer River section (Alberta, Canada). We were able to cyclostratigraphically tune sediments in a non-marine, fluvial environment utilising high-resolution proxy records suggesting a 11-12 precession related cyclicity. Assuming the 40Ar/39Ar method is inter-calibrated with the cyclostratigraphy, the apparent age for C29r suggests that the K/Pg boundary falls between eccentricity maxima and minima, yielding an age of the C29r between 65.89 ± 0.08 and 66.30 ± 0.08 Ma. Assuming that the bundle containing the coal horizon represents a precession cycle, the K/Pg boundary is within the analytical uncertainty of the youngest zircon population achieving a revised age for the K/Pg boundary as 65.75 ± 0.06 Ma. The Campanian - Maastrichtian boundary is preserved in the sedimentary succession of the Horseshoe Canyon Formation and has been placed ~8 m below Coal nr. 10. Cyclostratigraphic studies show that the formation of these depositional sequences (alternations) of all scales are influenced directly by sea-level changes due to precession but more dominated by eccentricity cycles proved in the cyclostratigraphic framework and is mainly controlled by sand horizons, which have been related by autocyclicity in a dynamic sedimentary setting. Our work shows that the Campanian - Maastrichtian boundary in the Western Canada Sedimentary Basin coincides with ~2.5 eccentricity cycles above the youngest zircon age population at the bottom of the section and ~4.9 Myr before the Cretaceous - Palaeogene boundary (K/Pg), and thus corresponds to an absolute age of 70.65 ± 0.09 Ma producing an ~1.4 Myr younger age than recent published ages. Finally, using advances with terrestrial carbon isotope and planktonic foraminifera records within central Hokkaido, Northwest Pacific, sections from the Cretaceous Yezo group were correlated to that of European and North American counterparts. Datable ash layers throughout the Kotanbetsu and Shumarinai section were analysed using both 40Ar/39Ar and U-Pb methods. We successfully dated two ash tuff layers falling either side of the Turonian - Coniacian boundary, yielding an age range for the boundary between 89.31 ± 0.11 Ma and 89.57 ± 0.11 Ma or a boundary age of 89.44 ± 0.24 Ma. Combining these U-Pb ages with recent published ages we are able to reduce the age limit once more and propose an age for the Turonian - Coniacian boundary as 89.62 ± 0.04 Ma.
58

Ablagerungsfazies der Grobklastika der oberen Halle-Formation

Grieswald, Heike 21 June 2016 (has links) (PDF)
Die Sedimente des Halleschen Permokarbonkomplexes gaben schon immer Raum für Spekulationen. Aufgrund ihrer Dominanz an rhyolithischen Geröllen wurden sie über einen langen Zeitraum einheitlich als Postporphyrschutt ausgehalten. Vielfältig wechselnde Faziesbedingungen machten es jedoch notwendig, die Sedimente aufzugliedern. Neuere Erkenntnisse in der Erforschung des Halleschen Permokarbonkomplexes erfordern eine Überprüfung v. a. der nach KUNERT (1995) aufgestellten allgemeinen stratigraphischen Gliederung der Unterrotliegendsedimente in Halle,- Hornburg,- Sennewitz- und Brachwitz-Formation anhand einiger ausgewählter Beispiele. Der ursprüngliche Gedanke der Diplomarbeit bestand darin, eine Fazies- und eine Geröllanalyse der unterpermischen Abtragungsprodukte des Halle-Vulkanitkomplexes anzufertigen. Zur Verfügung standen zwei Kernbohrungen und zwei Aufschlüsse, sowie diverse Unterlagen zu angrenzenden Bohrungen in der Saale-Senke. Die beiden Oberflächenaufschlüsse Riveufer und Teichgrund sollten stratigraphisch aufgenommen werden, so dass eine Fazieszuordnung möglich ist. Die Bohrung Brachwitz 2/62 wurde mit dem Ziel aufgenommen, neuere Theorien über den Ablagerungszeitraum der Rotliegend-Sedimente in Bezug auf den permokarbonen Vulkanismus zu widerlegen oder zu bekräftigen. Die zweite Bohrung (Kb Lochau 7/65) wurde am Rande mit in die Diplomarbeit einbezogen, da sie das immense Spektrum der spätvulkanischen Aktivitäten im Halle Permokarbonkomplex erweitert. Ergebnis ist eine Neugliederung des Rotliegend im Halleschen Permokarbonkomplex, in der nur noch die Halle-Formation mit ihrem ausgeprägten Vulkanismus und die Hornburg-Formation, stellvertretend für alle jüngeren Abtragungsprodukte des Halle Vulkanitkomplexes, unterschieden werden. Mit einem großen Hiatus folgt anschließend die Eisleben-Formation.
59

Ablagerungsfazies der Grobklastika der oberen Halle-Formation

Grieswald, Heike 16 August 2004 (has links)
Die Sedimente des Halleschen Permokarbonkomplexes gaben schon immer Raum für Spekulationen. Aufgrund ihrer Dominanz an rhyolithischen Geröllen wurden sie über einen langen Zeitraum einheitlich als Postporphyrschutt ausgehalten. Vielfältig wechselnde Faziesbedingungen machten es jedoch notwendig, die Sedimente aufzugliedern. Neuere Erkenntnisse in der Erforschung des Halleschen Permokarbonkomplexes erfordern eine Überprüfung v. a. der nach KUNERT (1995) aufgestellten allgemeinen stratigraphischen Gliederung der Unterrotliegendsedimente in Halle,- Hornburg,- Sennewitz- und Brachwitz-Formation anhand einiger ausgewählter Beispiele. Der ursprüngliche Gedanke der Diplomarbeit bestand darin, eine Fazies- und eine Geröllanalyse der unterpermischen Abtragungsprodukte des Halle-Vulkanitkomplexes anzufertigen. Zur Verfügung standen zwei Kernbohrungen und zwei Aufschlüsse, sowie diverse Unterlagen zu angrenzenden Bohrungen in der Saale-Senke. Die beiden Oberflächenaufschlüsse Riveufer und Teichgrund sollten stratigraphisch aufgenommen werden, so dass eine Fazieszuordnung möglich ist. Die Bohrung Brachwitz 2/62 wurde mit dem Ziel aufgenommen, neuere Theorien über den Ablagerungszeitraum der Rotliegend-Sedimente in Bezug auf den permokarbonen Vulkanismus zu widerlegen oder zu bekräftigen. Die zweite Bohrung (Kb Lochau 7/65) wurde am Rande mit in die Diplomarbeit einbezogen, da sie das immense Spektrum der spätvulkanischen Aktivitäten im Halle Permokarbonkomplex erweitert. Ergebnis ist eine Neugliederung des Rotliegend im Halleschen Permokarbonkomplex, in der nur noch die Halle-Formation mit ihrem ausgeprägten Vulkanismus und die Hornburg-Formation, stellvertretend für alle jüngeren Abtragungsprodukte des Halle Vulkanitkomplexes, unterschieden werden. Mit einem großen Hiatus folgt anschließend die Eisleben-Formation.:Inhalt Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis 1. Einleitender Teil 1 1.1 Einleitung 1 1.2 Aufgabenstellung und Problematik 1 1.3 Geographischer Überblick über die Bohrungen und Aufschlüsse 2 2. Regionalgeologischer Teil 4 2.1 Aufbau des Halle Vulkanitkomplexes 4 2.2 Beckenentwicklung des Permokarbons im Bereich des Halle- Vulkanitkomplexes 5 2.3 Historischer Rückblick über die Einstufung der Rotliegend-Formationen im Halle Vulkanitkomplex 10 2.4 Neueste Entwicklungen in der Erforschung des Saale-Beckens 15 2.4.1 Die Ablagerungen der Halle-Formation 15 2.4.2 Die Ablagerungen der Sennewitz-Formation 16 2.4.3 Die Ablagerungen der Hornburg-Formation 17 2.4.4 Die Ablagerungen der Brachwitz-Formation 19 2.4.5 Die Ablagerungen der Eisleben-Formation 20 2.4.6 Aktuelle Stratigraphische Gliederung 22 2.5 Die späte Phase des Halle Vulkanitkomplexes und ihr Bezug zur Diplomarbeit 23 3 Arbeitsmethodik 24 3.1 Aufnahme der Bohrungen Brachwitz 2/62 und Lochau 7/65 24 3.2 Aufnahme des Aufschlusses am Teichgrund bei Döblitz 26 3.3 Aufnahme des Aufschlusses am Riveufer im Stadtgebiet von Halle 26 4. Vulkanische und sedimentäre grobklastische Transport- und Ablagerungssysteme 27 4.1 Vulkanische Massentransporte 27 4.1.1 Pyroklastische Ablagerungen 27 4.1.1.1 Pyroklastische Fallablagerungen 28 (1) Aschefallablagerungen 28 (2) Bimsführende Fallablagerungen 29 (3) Scoriaführende Fallablagerungen 29 4.1.1.2 Pyroklastische Stromablagerungen 29 (1) Bimsführende pyroklastische Stromablagerungen oder Ignimbrite 29 (2) Block- und Aschestromablagerungen 31 (3) Scoriaführende pyroklastische Stromablagerungen 32 4.1.1.3 Pyroklastische Surge-Ablagerungen 32 (1) Surgeablagerungen durch Aschewolken 32 (2) Ablagerungen am Boden der pyroklastischen Surge 33 (3) Ablagerungen an der Basis der pyroklastischen Surge 33 4.1.2 Explosive vulkanische Eruptionen 33 (1) Hawaiianische Eruptionen 34 (2) Plinianische Eruptionen 34 (3) Strombolianische Eruptionen 35 (4) Vulkanianische und Surtseyanische Eruptionen 35 4.1.3 Produkte phreatomagmatischer Eruptionen 36 (1) Maare 37 (2) Tuffkegel und Tuffringe 37 4.1.4 Tephraablagerungen 38 4.2 Sedimentäre Massentransporte 39 4.2.1 Alluviale Fächer 40 4.2.2 Schichtfluten 42 4.2.3 Flußsyteme 42 4.2.4 Überflutungsebenen 43 4.2.5 Deltas und Ästuare 44 5. Lithologien und Faziestypen 45 6. Aufschlüsse und Bohrungen 45 6.1 Aufschlußkomplex am Riveufer im Stadtteil Giebichenstein in Halle 48 6.1.1 Allgemeine Aussagen 48 6.1.2 Das Faziesmodell eines verflochtenen Flußsystems 48 (1) Ausbildung von Rinnen 48 (2) Einfallen der Rinnen 50 (3) Prallhänge 50 (4) Seitenanschnitte an beiden Enden des Aufschlusses 51 6.1.3 Ein tuffgefülltes Spaltensystem als syn- bis postsedimentäres Ereignis 52 6.1.4 Interpretation 53 6.2 Aufschluß am Teichgrund bei Döblitz 55 6.2.1 Allgemeine Aussagen 55 6.2.2 Sedimentäre Lithofaziestypen und -assoziationen 56 6.2.3 Dokumentation der einzelnen Aufschlüsse 56 6.2.3.1 Aufschluß T1 56 (1) Detaildarstellung Aufschluß am Teichgrund T1-1 56 6.2.3.2 Aufschluß T2 59 6.2.3.3 Aufschluß T3 59 6.2.4 Fazielle Diskussion 59 6.3 Kernbohrung Brachwitz BrwSk 2/62 südöstlich der Ortschaft Friedrichsschwerz 61 6.3.1 Allgemeine Informationen 61 6.3.2 Erläuterungen zu den Lithofaziestypen 61 (1) SFT-B1 Konglomerat der Eislebenformation 61 (2) SFT-T1 Sedimentäre Brekzie 61 (3) SFT-T4 Mittel- bis Grobsandstein 62 (4) SFT-B2 Schluffstein 62 (5) VFT-T0 Rhyolith, brekziös/ VFT-T1 Porphyrbrekzie, monomikt 63 (6) VFT-B12 Porphyrbrekzie mit Obsidianmatrix 64 (7) VFT-B2 Porphyrbrekzien, oligomikt und polymikt 64 (8) VFT-B3 Mittelsand, vulkanogen 65 (9) VFT-B5 Schluffstein, brekziiert 66 6.3.3 Auswertung 66 6.4 Kernbohrung Lochau 7/65 südöstlich Halle 68 6.4.1 Allgemeines 68 6.4.2 Erläuterungen zu den Vulkanischen Faziestypen 68 (1) VFT-L1 Aschentuff 68 (2) VFT-L2 Surges 69 (3) VFT-L3 Surge oder Explosionsbrekzie 70 (4) VFT-L4 Explosionsbrekzie mit Tuffzwickelfüllung 71 (5) Tuff mit einzelnen Ballistischen Bomben 72 6.4.4 Beispiel Ha-Lo7/17 73 6.4.5 Diskussion 74 7. Zusammenfassung und Ausblick 76 8. Literatur- und Quellenverzeichnis 78 9. Anhang Anlage 1: Allgemeines Anlage 2: Teichgrund bei Döblitz Anlage 3: Riveufer im Stadtzentrum von Halle (Saale) Anlage 4: Kb Brachwitz 2/62 Anlage 5: Kb Lochau 7/65

Page generated in 0.054 seconds