91 |
HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using Van Loanss Square Reduced MethodBenner, P., Byers, R., Barth, E. 30 October 1998 (has links) (PDF)
This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamilto- nian matrix to a square-reduced Hamiltonian uses only orthogonal symplectic similarity transformations. The eigenvalues can then be determined by applying the Hessenberg QR iteration to a matrix of half the order of the Hamiltonian matrix and taking the square roots of the computed values. Using scaling strategies similar to those suggested for algebraic Riccati equations can in some cases improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems.
|
92 |
Stabilization of large linear systemsHe, C., Mehrmann, V. 30 October 1998 (has links)
We discuss numerical methods for the
stabilization of large linear multi-input
control systems of the form x=Ax + Bu via a
feedback of the form u=Fx. The method
discussed in this paper is a stabilization
algorithm that is based on subspace splitting.
This splitting is done via the matrix
sign-function method. Then a projection into
the unstable subspace is performed followed by
a stabilization technique via the solution of
an appropriate algebraic Riccati equation.
There are several possibilities to deal with the
freedom in the choice of the feedback as well
as in the cost functional used in the Riccati
equation. We discuss several optimality criteria
and show that in special cases the feedback
matrix F of minimal spectral norm is obtained
via the Riccati equation with the zero constant term.
A theoretical analysis about the distance to
instability of the closed loop system is given
and furthermore numerical examples are presented
that support the practical experience with
this method.
|
93 |
A Multi-Grid Method for Generalized Lyapunov EquationsPenzl, Thilo 07 September 2005 (has links)
We present a multi-grid method for a class of
structured generalized Lyapunov matrix equations.
Such equations need to be solved in each step of
the Newton method for algebraic Riccati equations,
which arise from linear-quadratic optimal control
problems governed by partial differential equations.
We prove the rate of convergence of the two-grid
method to be bounded independent of the dimension
of the problem under certain assumptions.
The multi-grid method is based on matrix-matrix
multiplications and thus it offers a great
potential for a parallelization. The efficiency
of the method is demonstrated by numerical
experiments.
|
94 |
DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimatesPetkov, P. Hr., Konstantinov, M. M., Mehrmann, V. 12 September 2005 (has links)
We present new Fortran 77 subroutines which implement the Schur method and the
matrix sign function method for the solution of the continuoustime matrix algebraic
Riccati equation on the basis of LAPACK subroutines. In order to avoid some of
the wellknown difficulties with these methods due to a loss of accuracy, we combine
the implementations with block scalings as well as condition estimates and forward
error estimates. Results of numerical experiments comparing the performance of both
methods for more than one hundred well and illconditioned Riccati equations of order
up to 150 are given. It is demonstrated that there exist several classes of examples for
which the matrix sign function approach performs more reliably and more accurately
than the Schur method. In all cases the forward error estimates allow to obtain a reliable
bound on the accuracy of the computed solution.
|
95 |
Lagrangian invariant subspaces of Hamiltonian matricesMehrmann, Volker, Xu, Hongguo 14 September 2005 (has links)
The existence and uniqueness of Lagrangian invariant subspaces of Hamiltonian matrices is studied. Necessary and sufficient conditions are given in terms of the Jordan structure and certain sign characteristics that give uniqueness of these subspaces even in the presence of purely imaginary eigenvalues. These results are applied to obtain in special cases existence and uniqueness results for Hermitian solutions of continuous time algebraic Riccati equations.
|
96 |
Linear-Quadratic Regulator Design for Optimal Cooling of Steel ProfilesBenner, Peter, Saak, Jens 11 September 2006 (has links)
We present a linear-quadratic regulator (LQR) design for a heat transfer model describing the cooling process of steel profiles in a rolling mill. Primarily we consider a feedback control approach for a linearization of the nonlinear model given there, but we will also present first ideas how to use local (in time) linearizations to treat the nonlinear equation with a regulator approach. Numerical results based on a spatial finite element discretization and a numerical algorithm for solving large-scale algebraic Riccati equations are presented both for the linear and nonlinear models.
|
97 |
Solving Linear-Quadratic Optimal Control Problems on Parallel ComputersBenner, Peter, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio 11 September 2006 (has links)
We discuss a parallel library of efficient algorithms for the solution of linear-quadratic optimal control problems involving largescale systems with state-space dimension up to $O(10^4)$. We survey the numerical algorithms underlying the implementation of the chosen optimal control methods. The approaches considered here are based on invariant and deflating subspace techniques, and avoid the explicit solution of the associated algebraic Riccati equations in case of possible ill-conditioning. Still, our algorithms can also optionally compute the Riccati solution. The major computational task of finding spectral projectors onto the required invariant or deflating subspaces is implemented using iterative schemes for the sign and disk functions. Experimental results report the numerical accuracy and the parallel performance of our approach on a cluster of Intel Itanium-2 processors.
|
98 |
Control predictivo basado en modelos (CPBM) robusto con BDURamos Fernández, César 06 May 2008 (has links)
El Control Predictivo Basado en Modelos (CPBM) optimiza un índice que incorpora un parámetro de penalización para las acciones de control lambda, con el fin de que no sean demasiado bruscas, a la vez que se mejora la robustez del sistema. El principal inconveniente radica en que el sintonizado de lambda se suele regir por criterios empíricos, y poco orientados a la mejora de la robustez.
De entre las diferentes técnicas de mejora de la robustez en CPBM se destaca la optimización Min-Max de las especificaciones, donde se resuelve el problema de optimización para el peor modelo en una región acotada.
Desde otro punto de vista, el principio de mínimos cuadrados está presente en numerosas teorías de identificación y control. De hecho el CPBM se puede plantear como un problema de mínimos cuadrados. Su principal inconveniente radica en que es sensible a los errores en los datos (mal condicionamiento), lo cual se puede mejorar regularizando el problema mediante el parámetro de regularización lambda ajustado empíricamente (análogo al parámetro lambda de penalización del esfuerzo de control en CPBM).
La técnica BDU (Bounded Data Uncertainties) es una técnica de regularización de problemas de mínimos cuadrados, originalmente desarrollada para problemas de estimación, y poco usada en control, salvo el controlador lineal cuadrático (LQR) con horizonte de predicción finito considerando incertidumbre paramétrica.
Dicha técnica diseña el parámetro de regularización lambda teniendo en cuenta la cota de la incertidumbre presente en el sistema y plantea el problema como una optimización Min-Max. Por lo tanto se puede establecer la analogía con el problema Min-Max de CPBM robusto, así el objetivo principal de la tesis consiste en usar la técnica BDU para sintonizar lambda de modo guiado y con el fin de mejorar la robustez del sistema.
Otro objetivo adicional es asegurar la estabilidad. Por tanto, se pretende plantear un LQR robusto y estable, denominado LQR-BDU, robusto por usar / Ramos Fernández, C. (2007). Control predictivo basado en modelos (CPBM) robusto con BDU [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1844
|
99 |
Structure-Exploiting Numerical Algorithms for Optimal ControlNielsen, Isak January 2017 (has links)
Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution. / Numeriska algoritmer för att effektivt lösa optimala styrningsproblem är en viktig komponent i avancerade regler- och estimeringsstrategier som exempelvis modellprediktiv reglering (eng. model predictive control (MPC)) och glidande horisont estimering (eng. moving horizon estimation (MHE)). MPC är en reglerstrategi som kan användas för att styra system med flera styrsignaler och/eller utsignaler samt ta hänsyn till exempelvis begränsningar i styrdon. Den grundläggande principen för MPC och MHE är att styrsignalen och de estimerade variablerna kan beräknas genom att lösa ett optimalt styrningsproblem. Detta optimeringsproblem måste lösas inom en kort tidsram varje gång som en styrsignal ska beräknas eller som variabler ska estimeras, och således är det viktigt att det finns effektiva algoritmer för att lösa denna typ av problem. Två vanliga sådana är inrepunkts-metoder (eng. interior-point (IP)) och aktivmängd-metoder (eng. active-set (AS)), där optimeringsproblemet löses genom att lösa ett antal enklare delproblem. Ett av huvudfokusen i denna avhandling är att beräkna lösningen till dessa delproblem på ett tidseffektivt sätt genom att utnyttja strukturen i delproblemen. Lösningen till ett delproblem beräknas genom att lösa ett linjärt ekvationssystem. Detta ekvationssystem kan man exempelvis lösa med generella metoder eller med så kallade Riccatirekursioner som utnyttjar strukturen i problemet. När man använder en AS-metod för att lösa MPC-problemet så görs endast små strukturerade ändringar av ekvationssystemet mellan varje delproblem, vilket inte har utnyttjats tidigare tillsammans med Riccatirekursionen. I denna avhandling presenteras ett sätt att utnyttja detta genom att bara göra små förändringar av Riccatirekursionen för att minska beräkningstiden för att lösa delproblemet. Idag har behovet av parallella algoritmer för att lösa MPC och MHE problem ökat. Att algoritmerna är parallella innebär att beräkningar kan ske på olika delar av problemet samtidigt med syftet att minska den totala verkliga beräkningstiden för att lösa optimeringsproblemet. I denna avhandling presenteras parallella algoritmer som kan användas i både IP- och AS-metoder. Algoritmerna beräknar lösningen till delproblemen parallellt med ett förutbestämt antal steg, till skillnad från många andra parallella algoritmer där ett okänt (ofta stort) antal steg krävs. De parallella algoritmerna utnyttjar problemstrukturen för att lösa delproblemen effektivt, och en av dem har utvärderats på parallell hårdvara. Linjära MPC problem kan också lösas genom att utnyttja teori från multiparametrisk kvadratisk programmering (eng. multiparametric quadratic programming (mp-QP)) där den optimala lösningen beräknas i förhand och lagras i en tabell, vilket benämns explicit MPC. I detta fall behöver inte MPC problemet lösas varje gång en styrsignal beräknas, utan istället kan den förberäknade optimala styrsignalen slås upp. En nackdel med mp-QP är att det krävs mycket plats i minnet för att spara lösningen. I denna avhandling presenteras en strukturutnyttjande algoritm som kan minska behovet av minne för att spara lösningen, vilket kan öka det praktiska användningsområdet för mp-QP och explicit MPC.
|
100 |
Commande optimale et jeux différentiels linéaires quadratiquesDello Sbarba, Olivier January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
Page generated in 0.0306 seconds