• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 42
  • 5
  • 1
  • Tagged with
  • 106
  • 43
  • 42
  • 40
  • 31
  • 27
  • 25
  • 25
  • 24
  • 24
  • 24
  • 19
  • 18
  • 18
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Two-Dimensional Bin Packing Problem with Guillotine Restrictions

Pietrobuoni, Enrico <1986> 10 April 2015 (has links)
This thesis, after presenting recent advances obtained for the two-dimensional bin packing problem, focuses on the case where guillotine restrictions are imposed. A mathematical characterization of non-guillotine patterns is provided and the relation between the solution value of the two-dimensional problem with guillotine restrictions and the two-dimensional problem unrestricted is being studied from a worst-case perspective. Finally it presents a new heuristic algorithm, for the two-dimensional problem with guillotine restrictions, based on partial enumeration, and computationally evaluates its performance on a large set of instances from the literature. Computational experiments show that the algorithm is able to produce proven optimal solutions for a large number of problems, and gives a tight approximation of the optimum in the remaining cases.
2

Models and Algorihtm for the Optimization of Real-World Routing and Logistics Problems

Novellani, Stefano <1985> 10 April 2015 (has links)
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
3

On the interplay of Mixed Integer Linear, Mixed Integer Nonlinear and Constraint Programming

Wiese, Sven <1985> 27 May 2016 (has links)
In this thesis we study selected topics in the field of Mixed Integer Programming (MIP), in particular Mixed Integer Linear and Nonlinear Programming (MI(N)LP). We set a focus on the influences of Constraint Programming (CP). First, we analyze Mathematical Programming approaches to water network optimization, a set of challenging optimization problems frequently modeled as non-convex MINLPs. We give detailed descriptions of many variants and survey solution approaches from the literature. We are particularly interested in MILP approximations and present a respective computational study for water network design problems. We analyze this approach by algorithmic considerations and highlight the importance of certain convex substructures in these non-convex MINLPs. We further derive valid inequalities for water network design problems exploiting these substructures. Then, we treat Mathematical Programming problems with indicator constraints, recalling their most popular reformulation techniques in MIP, leading to either big-M constraints or disjunctive programming techniques. The latter give rise to reformulations in higher-dimensional spaces, and we review special cases from the literature that allow to describe the projection on the original space of variables explicitly. We theoretically extend the respective results in two directions and conduct computational experiments. We then present an algorithm for MILPs with indicator constraints that incorporates elements of CP into MIP techniques, including computational results for the JobShopScheduling problem. Finally, we introduce an extension of the class of MILPs so that linear expressions are allowed to have non-contiguous domains. Inspired by CP, this permits to model holes in the domains of variables as a special case. For such problems, we extend the theory of split cuts and show two ways of separating them, namely as intersection and lift-and-project cuts, and present computational results. We further experiment with an exact algorithm for such problems, applied to the Traveling Salesman Problem with multiple time windows.
4

Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear Programming

Thomopulos, Dimitri <1987> 27 May 2016 (has links)
In this thesis we deal with two problems of resource allocation solved through a Mixed-Integer Linear Programming approach and a Mixed-Integer Nonlinear Chance Constraint Programming approach. In the first part we propose a framework to model general guillotine restrictions in two dimensional cutting problems formulated as Mixed-Integer Linear Programs (MILP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state of-the-art MIP solver, can tackle instances of challenging size. Our objective is to propose a way of modeling general guillotine cuts via Mixed Integer Linear Programs (MILP), i.e., we do not limit the number of stages (restriction (ii)), nor impose the cuts to be restricted (restriction (iii)). We only ask the cuts to be guillotine ones (restriction (i)). We mainly concentrate our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. In the second part we present a Branch-and-Cut algorithm for a class of Nonlinear Chance Constrained Mathematical Optimization Problems with a finite number of scenarios. This class corresponds to the problems that can be reformulated as Deterministic Convex Mixed-Integer Nonlinear Programming problems, but the size of the reformulation is large and quickly becomes impractical as the number of scenarios grows. We apply the Branch-and-Cut algorithm to the Mid-Term Hydro Scheduling Problem, for which we propose a chance-constrained formulation. A computational study using data from ten hydro plants in Greece shows that the proposed methodology solves instances orders of magnitude faster than applying a general-purpose solver for Convex Mixed-Integer Nonlinear Problems to the deterministic reformulation, and scales much better with the number of scenarios.
5

Mathematical Optimization for Routing and Logistic Problems

Gambella, Claudio <1988> 27 May 2016 (has links)
In this thesis, we focus on mathematical optimization models and algorithms for solving routing and logistic problems. The first contribution regards a path and mission planning problem, called Carrier-Vehicle Traveling Salesman Problem (CVTSP), for a system of heterogeneous vehicles. A Mixed-Integer Second Order Conic Programming (MISOCP) model and a Benders-like enumeration algorithm are presented for solving CVTSP. The second work concerns a class of routing problems, referred to as Interceptor Vehicle Routing Problems (IVRPs). They generalize VRPs in the sense that target points are allowed to move from their initial location according to a known motion. We present a novel MISOCP formulation and a Branch-and-Price algorithm based on a Lagrangian Relaxation of the vehicle-assignment constraints. Other two contributions focus on waste flow management problems: the former considers a deterministic setting in which a Mixed-Integer Linear Programming (MILP) formulation is used as a Decision Support System for a real-world waste operator, whereas the latter deals with the uncertainty of the waste generation amounts by means of Two-Stage Multiperiod Stochastic Mixed-Integer Programming formulations. Finally, we give an overview on the optimization challenges arising in electric car-sharing systems, both at strategic and tactical planning level.
6

LP-based heuristics for the Traveling Salesman Problem

Fortini, Matteo <1975> 29 May 2007 (has links)
No description available.
7

The Vertex Coloring Problem and its generalizations

Malaguti, Enrico <1977> 29 May 2007 (has links)
No description available.
8

Models and algorithms for combinatorial optimization problems arising in railway applications

Cacchiani, Valentina <1977> 29 May 2007 (has links)
No description available.
9

Combinatorial and Robust Optimisation Models and Algorithms for Railway Applications

Galli, Laura <1981> 16 April 2009 (has links)
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
10

Application-oriented Mixed Integer Non-Linear Programming

D'Ambrosio, Claudia <1980> 16 April 2009 (has links)
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.

Page generated in 0.0494 seconds