Spelling suggestions: "subject:"friedel shear zones""
1 |
The Nucleation and Evolution of Riedel Shear Zones as Deformation Bands in Porous SandstoneAhlgren, Stephen G. January 1999 (has links)
Riedel shear zones are geometric fault patterns commonly associated with strike-slip fault systems. The progressive evolution of natural Riedel shear zones within the Navajo Sandstone of southern Utah is interpreted from the spatial evolution of small-scale, incipient Proto-Riedel Zones (PRZs) to better-developed Riedel shear zones using field mapping and three-dimensional digital modeling. PRZs nucleate as a tabular zone of localized shearing marked by en èchelon deformation bands, each of which is no more than a few mm wide and tens of cm long, and oriented at 55° - 85° to the trend of the zone. With increasing strain, deformation bands and sedimentary markers are sheared ductily through granular flow and assume a sigmoidal form. The temporal and spatial evolution of bands comprising a Riedel shear zone suggests that PRZs nucleate as transitional-compactional deformation bands under localized, supra-lithostatic fluid pressure. Subsequent bands develop under modified regional stresses as conjugate shear fractures within the strain- hardened axis of the PRZ. These antithetic driven systems are not compatible with traditional synthetic driven models of Riedel shear zones. Unlike most synthetic driven examples, these antithetic driven systems are not controlled by preexisting "basement" structures, thus their geometries reflect a primary propagation or secondary passive deformation mechanism.
|
Page generated in 0.0714 seconds