• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copy number variation of ribosomal RNA genes and the Pokey DNA transposon in the Daphnia pulex species complex

Eagle, Shannon H. C. 24 April 2013 (has links)
There are two full length variants of the Pokey DNA transposon, PokeyA and PokeyB, and two MITEs, mPok1 and mPok2. Pokey inserts into ribosomal DNA (rDNA) and other genomic locations within the genomes of Daphnia species. I used qPCR to estimate haploid rDNA and Pokey copy number in five Daphnia pulex complex species. In general, rDNA number ranges from ~100 to 500. In four species, low numbers of PokeyA and PokeyB in rDNA and the rest of the genome suggest these elements have low transposition rates, high deletion rates, and/or strong purifying selection against them at the host level. Further, PokeyA may have a higher transposition rate than PokeyB. In these species, mPok1 was not found, and mPok2 is likely inactive. In comparison, the fifth species, D. arenata, which may be a hybrid, has higher Pokey numbers. Higher Pokey numbers could be due to release from epigenetic repression following hybridization. / Ontario Graduate Scholarship in Science and Technology to Shannon H. C. Eagle, Natural Sciences and Engineering Research Council of Canada Discovery Grant to Dr. Teresa J. Crease
2

Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster

Lee, Mike Ming-Jen 12 1900 (has links)
Two different cloned human DNA segments encompassing transfer RNA gene and pseudogene clusters have been isolated from a human gene library harbored in bacteriophage lambda Charon 4-A. One clone (designated as λhVal7) encompassing a 20.5-kilobase (Kb) human DNA insert was found to contain a valine transfer RNA_AAC gene and several Alu-like elements by Southern blot hybridization analysis and DNA sequencing with the dideoxyribonucleotide chain-termination method in the bacteriophage M13mp19 vector. Another lambda clone (designated as λhLeu8) encompassing a 14.3-Kb segment of human DNA was found to contain a methionine elongator transfer RNA_CAT pseudogene and other as yet unidentified transfer RNA pseudogenes.
3

Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

Mwinyi, Adina, Meyer, Achim, Bleidorn, Christoph, Lieb, Bernhard, Bartolomaeus, Thomas, Podsiadlowski, Lars January 2009 (has links)
Background: Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results: The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion: The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.
4

Diversity of arbuscular mycorrhizal fungi in grasslands and arable fields : ecological factors related to community composition and dynamics /

Santos-González, Juan Carlos, January 2007 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2007. / Härtill 4 uppsatser.
5

THE POTENTIAL INDUCING PATTERN OF THE FLAX GENOME

Wang, Hao 01 February 2019 (has links)
No description available.
6

Genomic data mining for the computational prediction of small non-coding RNA genes

Tran, Thao Thanh Thi 20 January 2009 (has links)
The objective of this research is to develop a novel computational prediction algorithm for non-coding RNA (ncRNA) genes using features computable for any genomic sequence without the need for comparative analysis. Existing comparative-based methods require the knowledge of closely related organisms in order to search for sequence and structural similarities. This approach imposes constraints on the type of ncRNAs, the organism, and the regions where the ncRNAs can be found. We have developed a novel approach for ncRNA gene prediction without the limitations of current comparative-based methods. Our work has established a ncRNA database required for subsequent feature and genomic analysis. Furthermore, we have identified significant features from folding-, structural-, and ensemble-based statistics for use in ncRNA prediction. We have also examined higher-order gene structures, namely operons, to discover potential insights into how ncRNAs are transcribed. Being able to automatically identify ncRNAs on a genome-wide scale is immensely powerful for incorporating it into a pipeline for large-scale genome annotation. This work will contribute to a more comprehensive annotation of ncRNA genes in microbial genomes to meet the demands of functional and regulatory genomic studies.
7

How Much Initiator tRNA Does Escherichia Coli Need?

Samhita, Laasya January 2013 (has links) (PDF)
The work discussed in this thesis deals with the significance of initiator tRNA gene copy number in Escherichia coli. A summary of the relevant literature discussing the process of protein synthesis, initiator tRNA selection and gene redundancy is presented in Chapter 1. Chapter 2 describes the ‘Materials and Methods’ used in the experimental work carried out in this thesis. The next three chapters address the significance of initiator tRNA gene copy number in E. coli at three levels; at the level of the molecule (Chapter 3), at the level of the cell (Chapter 4) and at the level of the population (Chapter 5). At the end of the thesis are appended three publications, which include two papers where I have contributed to work not discussed in this thesis and one review article. A brief summary of chapters 3 to 5 is provided below: (i) Chapter 3: Can E. coli remain viable without the 3 G-C base pairs in initiator tRNA? Initiator tRNAs are distinguished from elongator tRNAs by several features key among which are the three consecutive and near universally conserved G-C base pairs found in the anticodon stem of initiator tRNAs. These bases have long been believed to be essential for the functioning of a living cell, both from in vitro and in vivo analysis. In this study, using targeted mutagenesis and an in vivo genetics based approach, we have shown that the 3 G-C base pairs can be dispensed with in E. coli, and the cell can be sustained on unconventional initiator tRNAs lacking the intact 3 G-C base pairs. Our study uncovered the importance of considering the relative amounts of molecules in a living cell, and their role in maintaining the fidelity of protein synthesis. (ii) Chapter 4: Can elongator tRNAs initiate protein synthesis? There are two types of tRNAs; initiator tRNA, of which there is one representative in the cell, and elongator tRNAs of which there are several representatives. In this study, we have uncovered initiation of protein synthesis by elongator tRNAs by depleting the initiator tRNA content in the cell. This raises the possibility that competition between initiator and elongator tRNAs at the P site of the ribosome occurs routinely in the living cell, and provides a basis for initiation at several 'start' sites in the genome that may not be currently annotated as such. We speculate that such a phenomenon could be exploited by the cell to generate phenotypic diversity without compromising genomic integrity. (iii) Chapter 5: How many initiator tRNA genes does E. coli need? E. coli has four genes that encode initiator tRNA, these are the metZWV genes that occur at 63.5 min in the genome, and the metY gene that occurs at 71.5 min in the genome. Earlier studies indicated that the absence of metY had no apparent impact on cell growth. In view of the importance of initiator tRNA gene copy number in maintaining the rate and fidelity of protein synthesis, we examined the fitness of strains carrying different numbers of initiator tRNA genes by competing them against each other in both rich and limited nutrient environments. Our results indicate a link between caloric restriction and protein synthesis mediated by the initiator tRNA gene copy number.

Page generated in 0.3024 seconds