• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictive Control of Electric Motors Drives for Unmanned Off-road Wheeled Vehicles

Mohammed, Mostafa Ahmed Ismail 02 April 2013 (has links)
Starting a few decades ago, the unmanned wheeled vehicle research has drawn lately more attention, especially for off-road environment. As the demand to use electric vehicles increased, the need to conceptualize the use of electrically driven vehicles in autonomous operations became a target. That is because in addition to the fact that they are more environmentally friendly, they are also easier to control. This also gives another reason to enhance further the energy economy of those unmanned electric vehicles. Off-road vehicles research was always challenging, but in the present work the nature of the off-road land is utilized to benefit from in order to enhance the energy consumption of those vehicles. An algorithm for energy consumption optimization for electrically driven unmanned wheeled vehicles is presented. The algorithm idea is based on the fact that in off-road conditions, when the vehicle passes a ditch or a hole, the kinetic energy gained while moving downhill could be utilized to reduce the energy consumption for moving uphill if the dimensions of the ditch/hole were known a distance ahead. Two manipulated variables are evaluated: the wheels DC motors supply voltage and the DC armature current. The developed algorithm is analysed and compared to the PID speed iii controller and to the open-loop control of DC motors. The developed predictive controller achieved encouraging results compared to the PID speed control and also compared to the open-loop control. Also, the use of the DC armature current as a manipulated variable showed more noticeable improvement over using the DC input voltage. Experimental work was carried out to validate the predictive control algorithm. A mobile robot with two DC motor driven wheels was deployed to overcome a ditch-like hindrance. The experimental results verified the simulation results. A parametric study for the predictive control is conducted. The effect of changing the downhill angle and the uphill angle as well as the size of the prediction horizon on the consumed electric energy by the DC motors is addressed. The simulation results showed that, when using the proposed approach, the larger the prediction horizon, the lower the energy consumption is.
2

Predictive Control of Electric Motors Drives for Unmanned Off-road Wheeled Vehicles

Mohammed, Mostafa Ahmed Ismail 02 April 2013 (has links)
Starting a few decades ago, the unmanned wheeled vehicle research has drawn lately more attention, especially for off-road environment. As the demand to use electric vehicles increased, the need to conceptualize the use of electrically driven vehicles in autonomous operations became a target. That is because in addition to the fact that they are more environmentally friendly, they are also easier to control. This also gives another reason to enhance further the energy economy of those unmanned electric vehicles. Off-road vehicles research was always challenging, but in the present work the nature of the off-road land is utilized to benefit from in order to enhance the energy consumption of those vehicles. An algorithm for energy consumption optimization for electrically driven unmanned wheeled vehicles is presented. The algorithm idea is based on the fact that in off-road conditions, when the vehicle passes a ditch or a hole, the kinetic energy gained while moving downhill could be utilized to reduce the energy consumption for moving uphill if the dimensions of the ditch/hole were known a distance ahead. Two manipulated variables are evaluated: the wheels DC motors supply voltage and the DC armature current. The developed algorithm is analysed and compared to the PID speed iii controller and to the open-loop control of DC motors. The developed predictive controller achieved encouraging results compared to the PID speed control and also compared to the open-loop control. Also, the use of the DC armature current as a manipulated variable showed more noticeable improvement over using the DC input voltage. Experimental work was carried out to validate the predictive control algorithm. A mobile robot with two DC motor driven wheels was deployed to overcome a ditch-like hindrance. The experimental results verified the simulation results. A parametric study for the predictive control is conducted. The effect of changing the downhill angle and the uphill angle as well as the size of the prediction horizon on the consumed electric energy by the DC motors is addressed. The simulation results showed that, when using the proposed approach, the larger the prediction horizon, the lower the energy consumption is.
3

Predictive Control of Electric Motors Drives for Unmanned Off-road Wheeled Vehicles

Mohammed, Mostafa Ahmed Ismail January 2013 (has links)
Starting a few decades ago, the unmanned wheeled vehicle research has drawn lately more attention, especially for off-road environment. As the demand to use electric vehicles increased, the need to conceptualize the use of electrically driven vehicles in autonomous operations became a target. That is because in addition to the fact that they are more environmentally friendly, they are also easier to control. This also gives another reason to enhance further the energy economy of those unmanned electric vehicles. Off-road vehicles research was always challenging, but in the present work the nature of the off-road land is utilized to benefit from in order to enhance the energy consumption of those vehicles. An algorithm for energy consumption optimization for electrically driven unmanned wheeled vehicles is presented. The algorithm idea is based on the fact that in off-road conditions, when the vehicle passes a ditch or a hole, the kinetic energy gained while moving downhill could be utilized to reduce the energy consumption for moving uphill if the dimensions of the ditch/hole were known a distance ahead. Two manipulated variables are evaluated: the wheels DC motors supply voltage and the DC armature current. The developed algorithm is analysed and compared to the PID speed iii controller and to the open-loop control of DC motors. The developed predictive controller achieved encouraging results compared to the PID speed control and also compared to the open-loop control. Also, the use of the DC armature current as a manipulated variable showed more noticeable improvement over using the DC input voltage. Experimental work was carried out to validate the predictive control algorithm. A mobile robot with two DC motor driven wheels was deployed to overcome a ditch-like hindrance. The experimental results verified the simulation results. A parametric study for the predictive control is conducted. The effect of changing the downhill angle and the uphill angle as well as the size of the prediction horizon on the consumed electric energy by the DC motors is addressed. The simulation results showed that, when using the proposed approach, the larger the prediction horizon, the lower the energy consumption is.
4

Evaluation of truck shipment transit hazards in Kenya and the effect of their simulations on the physical quality of bulk-packed black tea as a basis for establishment of a pre-shipment testing protocol for packaged goods to optimize packaging designs

Rimberia, Arthur Kirimi January 2015 (has links)
Focused transit hazard evaluations of distribution environments have become increasingly important in the recent past. This is due to the realization by businesses such as those in China (Baird et.al.,2004) that pack design optimization can result in reduction of packaging and other related costs, ensuring safe delivery of products as well as enabling companies to comply with global statutory obligations that demand packaging waste reduction via optimal packaging of goods. This work involved focused evaluation of the distribution hazards in truck transport within the bulk packed tea supply chain in Kenya as a basis for establishment of a pre-shipment protocol for packaged goods in order to optimize package designs and protect the physical quality of tea in transit. The parameters addressed included vibrations, shock, and environmental conditions of temperature and relative humidity. The research further examined how above transit conditions may affect important black tea physical quality parameters of density, particle size distribution, colour, and particle morphology. The work also formulated a new a pre-shipment testing protocol for tea (and other goods) moved within this supply channel thus allowing businesses to optimize their packaging designs. Furthermore, such pre-shipment protocols would help in predicting possible failure in transit. The Lasmont’s Saver model 3x90 transit data measuring unit mounted on the truck bed was used to collect transit data while a programmable electrodynamics vibration table was used to simulate the measured transit conditions. Using the specially fabricated rig apparatus for the experiment, analysis of changes of the tea physical properties of particle size distribution, bulk, tapped and compact densities as well as particle morphology and colour were investigated. The results showed that truck transport transit conditions experienced in the Kenyan roads with a composite spectrum of 1.358 (Grms) for the routes measured are more severe than the test standards set by both American Standard Testing Methods (ASTM) and International Safe Transit Association (ISTA) for truck transport conditions of 0.242 and 0,519 (Grms) respectively. This shows Kenyan roads compared to those where both ASTM and ISTA data was derived from are poorer and further confirms that both ASTM and ISTA standard tests may not be appropriate for use in designing optimal packaging for the Kenyan distribution environment. In addition, vibration intensities experienced were relatively higher than average recorded from other similar studies carried out in other parts of the world such as Brazil (0.628 Grms), USA(maximum 0.89 Grms), Spain (0.194Grms) and Indian highways (0.161 Grms). The work revealed how poor Kenyan roads are and that they would lead to damage of delicate physical qualities of tea including particle size distribution for each grade of tea, particle morphology and density unless the right packaging is used. This therefore underpins the importance of carrying out focused pre-shipment testing for a given distribution environment as general test procedures will not allow optimization of packaging designs. Due to the prevailing poor road conditions in Kenya as shown earlier by relatively high vibration and shock impacts, results showed that these hazards together with load compression affected the tea particle integrity in transit leading to breakage of larger tea particles to give rise to smaller particles unless adequate protective distribution packaging has been given due consideration. Equally, particle density as well as the particle surface morphology was affected resulting in undesirable impact on tea physical quality. Consistency in density of tea is an important aspect for the blenders of bulk tea since packing machines often operate within defined density limits. Compressive forces within the pallet load led to the crushing of larger tea particles into smaller ones, thus undermining the desirable black colour tea leaving it greyish which is considered in the tea trade as poor tea quality. In addition, the results confirmed that the effect of compression load on the physical tea quality was more severe than the vibration/shock impact alone. Moreover, the change in physical quality was related to the transit time (vibration period) up to maximum equilibrium level. Density of tea increased with compression load up to a maximum of 350g. The same, however, declined at 400g static load due to resonance conditions of the simulation assembly. Tea morphology measurements indicated that the initial rounded shape of the tea particles gradually changed to an elongated shape with rugged surface. This had an effect of not only damaging the desired black colour but also altered the flow properties of the tea which is an important aspect for bulk tea buyers during their subsequent handling activities of blending and packaging. A new relationship called compact density and compact ratio was established that related elevated tea density in transit due to ‘jamming’ of tea particles upon application of static load pressure on the tea at the lower levels of the pallet load. In addition, a correlation of density against tea powder “stain” travel within the test container containing tea particles, further confirmed that force impulses from the static load on top of tea particles was being transmitted perpendicular down to the bottom of the pallet load. The correlation of both the distance moved by the static load inside the tea container and tea powder “stain” column height on the test tube below the static load with the compact density of tea, brought out further empirical data that could be used by researchers to accurately predict the tea density from both the above parameters. The research further revealed that compressive forces on the tea particles at lower levels of the pallet load had more impact on the damage of tea particles compared to vibration/shock impacts. Finally, there is need for the existing packaging standards for bulk packed black tea to be revised in the light of the newly developed pre-shipment testing protocols from this research.
5

Vliv chůze naboso na posturální stabilizaci / An influence of barefoot walking on postural stabilization

Pytlová, Lucie January 2016 (has links)
Title: An influence of barefoot walking on postural stabilization Objectives of the thesis: The subject of my diploma thesis is to assess an immediate effect of outside walking on a postural stabilization in two groups throught an experiment. First group of tested subjects (probands) walked barefoot and the other group walked in the conventional shoes. An ambulation took place in outside conditions. The objective of this work is to judge if barefoot walking can have a positive influence on stabilization capabilities of individuals. Farther objective is to judge, if there is a correlation between motor reactions on the tactile stimulation of the soles of the feet and and two walking's manners (shod/unshod). Methods: In this thesis were used a method of anlalysis and a method of comparison in this thesis. The experiment was made in form of pretest (3 measurements) and posttest (3 measurements) on 30 probands. Required data for analysis were obtained by measurements of postural somatooscilography (pSOG). There was evaluated the postural provocation test on the platform of Posturomed. During test was measured a stopping and persistance of one leg stand for the period of 8 seconds. Oscillation curves of platform recorded by an accelerometer and programme Microswing 5.0 were evaluated in programme...
6

DESIGN IMPROVEMENTS OF DISTRIBUTION TRANSFORMERS : How to improve conditions of transportation in Vietnam / DESIGNFÖRBÄTTRINGAR AV DISTRIBUTIONSTRANSFORMATORER : Hur man kan förbättra transportförhållanden i Vietnam

Magnusson, Lisa January 2014 (has links)
Nowadays international companies wish to relocate their production to developing countries in Asia. The product design is often developed in Europe and is, therefore, not always adapted to the production (transport and manufacture conditions) present in the country of manufacture. The consequence is less qualitative products e.g. distribution transformers of ABB Vietnam get damaged during transport; a problem none existing in Europe. The purpose of the project was to develop the design of distribution transformers for ABB Vietnam, so they better withstand the transport conditions. This Bachelor Degree Project in Integrated Product Development follow a general design process typically for product development and is divided into four main phases. The four faces are; Exploration (of the ill-defined problem space), Generation (of concepts), Evaluation (of the design proposals), and Communication (of the final design solution). Methodologies as literature studies and empirical investigations (observations and interviews) performed at the ABB Vietnam factory in Hanoi provided information about the problem space and a brief overview of the production of ABB transformers. In the study it emerged that the underlying problem was due to both the structure of the product and the infrastructure of the country, e.g. extreme road conditions, lower standard of transportation means etc. Design methodologies were implemented to systematically create ideas, generate and evaluate a number of concepts. The final design concept chosen was simulated to behaviour adequately of transport in real life to verify that the concept manage its purpose. The concept can be further improved and optimised. The outcome of the study revealed the possibilities of improvement, designers can contribute to increased quality of products by understanding the country of manufacture. The thesis is intended to enlighten people working with product development what they shall consider when designing for transportation, and may be used as a practical example of similar problems. The final design concept is an external support frame attached to the transformer to enhance support and contribute to improved quality – especially under extreme road conditions. / Internationella företag vill idag flytta sin produktion till utvecklingsländer i Asien. Deras produkter vars design har utvecklats i Europa är därmed inte alltid anpassade till transport- och tillverkningsförhållanden som finns i tillverkningslandet. Konsekvensen blir mindre kvalitativa produkter. Ett exempel på detta problem är distributionstransformatorer från ABB Vietnam som skadas under vägtransporter pga. dåliga vägar, ett problem som är omärkbart i Europa. Syftet med projektet var därför att analysera och utveckla designen av distributionstransformatorer, för ABB Vietnam, så att de bättre klarar av de svåra vägtransporterna. Detta examensarbete inom Integrerad Produktutveckling följer den allmänna designprocessen typiskt för produktutveckling och består av fyra faser som inkluderar Utforskning (av det vagt definierade problemområdet), Generering (av koncept), Utvärdering (av designförslag) och Kommunicering (av det slutgiltiga designförslaget). Metoder som litteraturstudier och empiriska undersökningar (observationer och intervjuer) utfördes på ABB Vietnam, i fabriken som ligger i Hanoi. Därifrån uppdagades information om problemområdet och en översikt över produktionen av ABB transformatorer. I studien framkom att det underliggande problemet berodde på en kombination av produktens struktur och landets infrastruktur t.ex. extrema vägförhållanden, lägre standard för transportmedel, etc. För att systematiskt skapa nya idéer implementerades diverse designmetoder, för att utveckla och värdera ett antal koncept. Det slutliga designkonceptet som valdes simulerades med avseende på verkliga transportförhållanden för att verifiera att konceptet kommer att motstå dessa påkänningar. Konceptet kan förbättras och optimeras ytterligare. Resultatet av studien visade att designers kan bidra till förbättringar och öka kvaliteten på produkter genom att förstå förhållanden i tillverkningslandet. Studien syftar till att upplysa vad de som arbetar med produktutveckling ska tänka på när de designar för transport och den kan användas som ett praktiskt exempel för liknande problem. Det slutliga designkonceptet är en extra stödram fäst på transformatorn för att öka transformatorns hållbarhet och förbättra kvaliteten - särskilt under extrema vägförhållanden.
7

Developing an autosteering of road motor vehicles in slippery road conditions / 滑りやすい路面条件における自動車の自動操縦に関する研究 / スベリヤスイ ロメン ジョウケン ニオケル ジドウシャ ノ ジドウ ソウジュウ ニカンスル ケンキュウ

Natalia Mihajlovna Alekseeva, Natalia Alekseeva 19 September 2020 (has links)
In the nearest future, the human driver is viewed as a reliable backup even for the fully automated road motor vehicles (cars). Indeed, the driver is assumed to swiftly take the control of the car in cases of suddenly occurring (i) challenging environmental conditions, (ii) complex unforeseen driving situations, or (iii) degradation of performance of the car. However, due to the cognitive overload in such a sudden, stressful takeover of the control, the driver would often experience the startle effect, which usually results in an unconscious, instinctive, yet incorrect response. An extreme case of startle is freezing, in which the driver might be incapable to respond to the sudden takeover of control at all. The possible approaches to alleviate the startle during the takeover of control (i.e., the automation startle) include an offset- (i.e., either early- or delayed-), gradual yielding the controls to the driver. In the cases considered above, however, these approaches are hardly applicable because of (i) the presumed unpredictability of the events that result in the need of takeover of control, and (ii) the severe time constraints of the latter. Conversely, the objective of our research is to propose an approach of minimizing the need of yielding the control to the driver in challenging environmental conditions by guaranteeing an adequate automated control in these conditions. Focusing on slippery roads as an instance of challenging conditions, and steering control as an instance of control, we aim at developing such an automated steering that controls the car adequately in various road surfaces featuring low friction coefficients without the need of driver’s intervention.In order to develop such an automated steering we employed an in-house evolutionary computation framework – XML-based genetic programming (XGP) – which offers a flexible, portable, and human readable representation of the evolved optimal steering functions. The trial runs of the evolved steering functions were performed in the Open Source Racing Car Simulator (TORCS), which features a realistic, yet computationally efficient simulation of the car and its environment. The obtained experimental results indicate that due to the challenging dynamics of the unstable car on slippery roads, neither the canonical (tuned) servo-control (as a variant of PD) nor the (tuned) PID-controller could control the car adequately on slippery roads. On the other hand, the controller, featuring a relaxed, arbitrary structure evolved by XGP outperforms both the servo- and PID controllers in that it results in a minimal deviation of the car from its intended trajectory in rainy, snowy, and icy road conditions. Moreover, the evolved steering that employs anticipated perceptions is even superior as it could anticipate the imminent understeering of the car at the entry of the turns and consequently – to compensate for such an understeering by proactively turning the steering wheels in advance – well before entering the turn. The obtained results suggest a human competitiveness of the evolved automated steering as it outperforms the commonly used alternative steering controllers proposed by human experts. The research could be viewed as a step towards the evolutionary development of automated steering of cars in challenging environmental conditions. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0763 seconds