• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Software Environment For Behavior-based Mobile Robot Control

Bekmen, Onur 01 January 2007 (has links) (PDF)
Robotic science can be defined as a modern multi-disciplinary branch of science, which hosts many technological elements with a huge theoretic base. From electrical and electronics engineering point of view, construction of intelligent agents that produce and/or collects information by interacting the surrounding environment and that can achieve some goal via learning, is investigated in robotic science. In this scope, behavior-based robotic control has emerged in recent years, which can be defined as a hierarchically higher control mechanism over classical control theory and applications. In this thesis, software which is capable of producing behavior-based control over mobile robots is constructed. Research encapsulates an investigation on behavior-based robotic concept by comparison of different approaches. Although there are numerous commercial and freeware software products for robotics, the number of open source, detail documented software on behavior-based control concept together with easy usage is limited. Aimed to fulfill a necessity in this field, an open source software environment is implemented in which different algorithms and applications can be developed. In order to evaluate the effectiveness and the capabilities of the implemented software, a fully detailed simulation is conducted. This simulation covers multi-behavior coordination concept for a differential drive mobile robot navigating in a collision free path through a target point which is detected by sensors, in an unstructured environment, that robot has no priori information about, in which static and moving obstacles exists. Coordination is accomplished by artificial neural network with back-propagation training algorithm. Behaviors are constructed using fuzzy control concept. Mobile robot has no information about sizes, number of static and/or dynamic obstacles. All the information is gathered by its simulated sensors (proximity, range, vision sensors). Yielded results are given in detail.

Page generated in 0.036 seconds