Spelling suggestions: "subject:"runge"" "subject:"rundt""
21 |
Tsunami Hydrodynamics In Coastal ZonesOzer, Ceren 01 June 2012 (has links) (PDF)
This study analyzes the parameter &ldquo / hydrodynamic demand&rdquo / that is also defined by the square of Froude Number representing the damage of tsunami waves on structures and coastlines, and other hydrodynamic parameters, i.e., the distribution of instantaneous flow depths, runup values and the direction of maximum currents, occurred during tsunami inundation by using advanced numerical modeling. The analyses are performed on regular-shaped basins with different bottom slopes and real-shaped topographies using different wave shapes, wave periods and types. Various orientation and amount of coastal and land structures are used in simulations to have results for many different cases. This study provides the opportunity to define the damage of level in residential areas and to test the performance of coastal protection structures. The behavior of tsunami hydrodynamic parameters in shallow and inundation zone is investigated and a correlation is obtained between the average maximum values of square of Froude Number with the wave characteristics and sea bottom slope. After determining hydrodynamic parameters in regular shaped basins, a case study is applied by modeling the March 11, 2011 Great East Japan Tsunami with finer resolution in nested domains. The determination of hydrodynamic parameters in inundation zone during 2011 Japan event is performed in one of the most damaged coastal city Kamaishi.
|
22 |
Simple models for predicting dune erosion hazards along the Outer Banks of North Carolina [electronic resource] / by Lauren McKinnon Wetzell.Wetzell, Lauren McKinnon. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 84 pages. / Thesis (M.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Hurricane hazards result from the combined processes of wind, waves, storm surge, and overwash (Lennon et al., 1996). Predicting the severity of these hazards requires immense effort to quantify the processes and then predict how different coastal regions respond to them. A somewhat simpler, but no less daunting task is to begin to predict the hazards due to potential erosion of barrier islands. A four-part scale has been developed by Sallenger (2000) to provide a framework for understanding how barrier islands might respond during extreme storm events. These four regimes describe how beach and dune elevations interact with surge and wave runup. This study will produce estimates of potential hazards through combining lidar surveys of dune elevation with modeled elevations of storm water levels. Direct measurements of maximum wave heights during hurricanes are rare. / ABSTRACT: We evaluated three simple equations proposed by Kjerfve (1986), Young (1988), and Hsu (1998) to forecast the maximum wave height (Hmax) generated by three 1999 hurricanes. Model results were compared to wave data recorded by the National Oceanic and Atmospheric Administration (NOAA) wave rider buoys. The radius of maximum winds, wind speed, forward velocity, distance from buoy to the storm's eye-wall (r), and buoy's position relative to the quadrant of the storm (Q) were found to have significant and direct roles in evaluating recorded hurricane induced wave heights (H) and thus, were individually examined for each comparison. The implications of the r and Q on H were assessed when determining the overall effectiveness of the modelers' equations. Linear regression analyses tested the accuracy of each modeled prediction of the Hmax, comparing it to the observed wave heights. Three statistical criteria were used to quantify model performance. / ABSTRACT: Hsu's model was the most reliable and useful forecasting technique. Despite the predictive skill of Hsu's model, direct observations of the maximum wave conditions, when available and appropriate, are preferred as inputs for SWAN, a 3rd generation shoaling wave model. Outputs from SWAN are used to calculate the empirical relationships for wave runup. For our test case, pre and post-storm topographies were surveyed as part of a joint USGS-NASA program using lidar technology. These data sets were used to calculate changes in the elevation and location of the dune crest (Dhigh) and dune base (Dlow) for the North Carolina Outer Banks. We hindcast potential coastal hazards (erosional hot spots) using the pre-storm morphology and modeled wave runup and compare those estimates to the measured results from the post-storm survey. / ABSTRACT: Links among the existing topography and spatial variations in wave runup were found to be 95% correlated for the north-south and east-west facing barrier islands. Application of Sallenger's (2000) four-part Storm Impact Scale to the pre-storm Dhigh elevation survey and wave runup extremes (Rhigh and Rlow) were found to accurately predict zones of overwash and showed potential to forecast the inundation regime. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
|
23 |
Extreme waves, overtopping and flooding at sea defencesRaby, Alison Caroline January 2003 (has links)
This thesis describes experiments that were carried out using focused wave groups in the UK Coastal Research Facility (UKCRF). Considerable effort was put into calibrating the UKCRF to determine the relationship between the input signals sent to the paddles and the waves generated in the facility. Focused wave groups of various sizes and phases, based on NewWave theory were generated, and measurements were made of the resulting surface elevation data, water particle kinematics, wave runup and overtopping volumes. NewWave theory models the profile of extreme waves in a Gaussian (random) sea. The thesis describes the first time this model has been applied in the context of coastal wave transformation. A method for the separation of the underlying harmonic structure of a focused wave group is described and results presented. This technique has been used in relatively deep water but is shown to work successfully in the coastal zone until wave overturning. A method has been devised to provide a theoretical Stokes-like expansion of the free and bound waves to model the surface elevation and water particle kinematics of the focused wave groups. Satisfactory agreement is achieved between the theoretical predictions of UKCRF measurements. Suggestions are made for an improved model. The underlying harmonic structure of the focused wave groups is presented as stacked time histories that give insight into the wave transformation process from deep to shallow water. Particular attention is paid to the low frequency wave generated as the wave group interacts with the beach. This is compared to the low frequency wave that is generated by a solitary wave in the UKCRF. Runup and overtopping measurements are in reasonable agreement with predictions based on certain empirical formulae, but not others. These comparisons are useful in identifying those formulae able to predict runup and overtopping of extreme waves in the coastal zone.
|
Page generated in 0.0426 seconds