• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Nanotechnological Applications of Biomolecular Motors and Microtubules

Chaudhuri, Samata 30 January 2018 (has links) (PDF)
Biomolecular motor based transport reconstituted in synthetic environment has been recently established as a promising component for the development of nanoscale devices. A minimal system consisting of microtubules propelled over a surface of immobilized kinesin motor proteins has been used to transport and manipulate cargo for molecular sorting, analyte detection, and other novel nanotechnological applications. Despite these achievements, further progress of the field and translation of the reported applications to a real-world setting require overcoming several key challenges, such as, development of effective cargo conjugation strategies and precise control of the transport directionality with the reconstituted biomolecular motor systems. The challenge of cargo conjugation is addressed in this thesis through the development of a robust bioorthogonal strategy to functionalize microtubules. The versatility of the developed method is demonstrated by covalently conjugating various types of cargos to microtubules. Further, the effect of the linker length on cargo attachment to microtubules is investigated by attaching cargo to microtubules via linkers of different lengths. By using kinesin-driven transport of microtubules that are covalently conjugated to antibodies, detection of various clinically relevant analytes is demonstrated as proof-of-principle applications for biosensing. Finally, the challenge of gaining control over transport directionality is addressed through topographical guiding of microtubules in nanostructures, and optimization of assay parameters to achieve successful guiding of microtubules. Spatio-temporal analyte concentration, using transport in these nanostructues, is also explored to make the biomolecular-motor based applications more suitable for use real-world point-of-care setting. Taken together, the experimental work in this thesis contributes to the field of nanotechnological applications of biomolecular motors. The developed microtubule functionalization method and understanding of the effect of cargo attachment via linkers provide useful design principles for efficient cargo loading to microtubules. Moreover, establishment of assay components for successful guiding of microtubules in nanostructures is a vital step forward for practical translation of future nanoscale devices.
2

Sidestepping mechanism of yeast kinesin-8, Kip3

Mitra, Aniruddha 07 March 2018 (has links) (PDF)
Kinesin-8 motors regulate the lengths of microtubules in cells. In previous studies, these motors have been shown to utilize their highly processive plus-end directed motility to reach microtubule plus-ends where they act as a microtubule depolymerase. The superprocessive motility importantly allows Kip3 motors to depolymerize microtubules in a length-dependent manner, the underlying mechanism of which has been described by an antenna model. During such long runs, motors in vivo are expected to frequently encounter roadblocks, such as microtubule associated proteins. The adaptions in the stepping mechanism that allow kinesin-8 motors to navigate around roadblocks to reach microtubule ends is not well understood. In this work, in vitro techniques were utilized to understand the navigation strategy of yeast kinesin-8, Kip3. Three-dimensional stepping motility of Kip3 on the surface of microtubules can be inferred (i) indirectly from rotational motion of microtubules gliding along a surface coated with Kip3 and (ii) directly by three-dimensional tracking of Kip3 on freely suspended microtubules. Firstly, an impact-free method to detect rotations of gliding microtubules was established based on fluorescent speckles within the microtubule structure in combination with fluorescent interference contrast microscopy. Secondly, a suspended microtubule assay was established to obtain three- dimensional trajectories of single Kip3 motors, using Parallax, a dual-focus imaging technique. The motility assays performed in this work revealed that Kip3 motors undergo left-handed helical motion around the microtubule lattice. This indicates that Kip3 employs a directed sidestepping strategy which is attributed to the motor having a flexible neck and/or a long neck linker. Interestingly, further analysis of the rotational motion revealed that the sidestepping of Kip3 is not directly coupled to the forward stepping. Based on these observations, it is hypothesized that the motor can transition from a two-head-bound conformation to a one-head-bound conformation while waiting for ATP. Whereas the motor can step forward from both states, sidestepping is strongly favored from the one-head-bound conformation. This hypothesis was confirmed through experiments as well as numerical simulations where the transition from the two-head-bound conformation to the one-head-bound conformation was enhanced by either prolonging the ATP waiting time or increasing the transition rate (by reducing the motor-microtubule interaction). Finally, Kip3 based motility assays were performed using microtubules decorated with rigor binding kinesin-1 motors acting as roadblocks. While gliding assays using roadblock-decorated microtubules indicated a left-biased sidestepping strategy for Kip3, stepping assays revealed an additional diffusive component in the stepping motility of Kip3, along with the leftward bias. Taken together, it is hypothesized that Kip3 has a dual-mode roadblock circumnavigation strategy. Upon encountering a roadblock, the motor circumnavigates it (i) by shifting to the adjacent left microtubule protofilament using the biased sidestepping mechanism or (ii) by shifting microtubule protofilaments in an unbiased diffusive manner upon switching out of the step cycle. Therefore, the biophysical properties of Kip3 are fine-tuned to ensure that the motor reaches the microtubule plus-end to perform its depolymerase activity.
3

How Kinesin-1 Deals With Roadblocks: Biophysical Description and Nanotechnological Application

Korten, Till 28 January 2010 (has links) (PDF)
Proteins have been optimized by evolution for billions of years to work on a nanometer scale. Therefore, they are extremely promising for nanotechnological applications. Cytoskeletal filaments propelled by surface-attached motor proteins have been recently established as versatile transport platforms for nano-sized cargo in molecular sorting and nano-assembly devices. However, in this gliding motility setup, cargo and motors share the filament lattice as a common substrate for their activity. Therefore, it is important to understand the influence of cargo-loading on transport properties. By performing single molecule stepping assays on biotinylated microtubules, it was shown that kinesin-1 motors first stop and then detach when they encounter a streptavidin obstacle on their path along the microtubule. Consequently, the deceleration of streptavidin coated microtubules in gliding assays could be attributed to an obstruction of kinesin-1's path on the microtubule rather than to "frictional" streptavidin-surface interactions. The insights gained by studying kinesin-1's behavior at obstacles were then used to demonstrate a novel sensing application: Using a mixture of two distinct microtubule populations that each bind a different kind of protein, the presence of these proteins was detected via speed changes in the respective microtubule populations. In future applications, this detection scheme could be combined with other recent advancements in the field, creating highly integrated lab-on-a-chip devices that use microtubule based transport to detect, sort and concentrate analytes. It has been envisioned that the kinesin-1-microtubule system could be used for even more complex appliances like nano-assembly lines. However, currently available control mechanisms for kinesin-1 based transport are not precise enough. Therefore, improved temporal control mechanisms for kinesin-1 were investigated: Using a polymer that changes its size in solution with temperature, starting and stopping of gliding microtubules was demonstrated. In combination with local heating by light, this effect could be used to control the gliding of single microtubules. Finally, a strategy to create photo-switchable kinesin-1 was developed and tested for feasibility using molecular modeling.

Page generated in 0.0288 seconds