361 |
Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection - Application aux changements d'occupation des sols et à l'estimation du bilan carboneMasse, Antoine 11 October 2013 (has links) (PDF)
La quantité de données de télédétection archivées est de plus en plus importante et grâce aux nouveaux et futurs satellites, ces données offriront une plus grande diversité de caractéristiques : spectrale, temporelle, résolution spatiale et superficie de l'emprise du satellite. Cependant, il n'existe pas de méthode universelle qui maximise la performance des traitements pour tous les types de caractéristiques citées précédemment; chaque méthode ayant ses avantages et ses inconvénients. Les travaux de cette thèse se sont articulés autour de deux grands axes que sont l'amélioration et l'automatisation de la classification d'images de télédétection, dans le but d'obtenir une carte d'occupation des sols la plus fiable possible. En particulier, les travaux ont portés sur la la sélection automatique de données pour la classification supervisée, la fusion automatique d'images issues de classifications supervisées afin de tirer avantage de la complémentarité des données multi-sources et multi-temporelles et la classification automatique basée sur des séries temporelles et spectrales de référence, ce qui permettra la classification de larges zones sans référence spatiale. Les méthodes ont été testées et validées sur un panel de données très variées de : capteurs : optique (Formosat-2, Spot 2/4/5, Landsat 5/7, Worldview-2, Pleiades) et radar (Radarsat,Terrasar-X), résolutions spatiales : de haute à très haute résolution (de 30 mètres à 0.5 mètre), répétitivités temporelles (jusqu'à 46 images par an) et zones d'étude : agricoles (Toulouse, Marne), montagneuses (Pyrénées), arides (Maroc, Algérie). Deux applications majeures ont été possibles grâce à ces nouveaux outils : l'obtention d'un bilan carbone à partir des rotations culturales obtenues sur plusieurs années et la cartographie de la trame verte (espaces écologiques) dans le but d'étudier l'impact du choix du capteur sur la détection de ces éléments.
|
362 |
Impact d'une mise en defens temporaire de prairies permanentes durant le pic de floraison : sélection alimentaire des brebis, diversité floristique et entomologique (Lepidoptera, Bombidae, Carabidae) des couvertsScohier, Alexandra 19 December 2011 (has links) (PDF)
L'érosion de la biodiversité prairiale est devenue une préoccupation majeure à l'échelle Européenne. Le pâturage ovin est supposé avoir un impact négatif sur la diversité prairiale, en raison de leur forte sélectivité pour les dicotylédones, indispensables aux insectes pollinisateurs. Comparés aux bovins, les ovins structurent peu les couverts et créent également moins de niches écologiques contrastées. L'objectif de cette thèse était de tester la faisabilité, et les bénéfices en pâturage ovin, d'une conduite en rotation dans laquelle une sous-parcelle est temporairement exclue du pâturage au moment du pic de floraison. Les effets de cette conduite ont été comparés à ceux d'un pâturage continu au même chargement. Au delà des indicateurs directs de performances zootechniques et de biodiversité (plantes, papillons, bourdons et carabes), nous avons analysé la sélection alimentaire des brebis dans les deux modes de conduite. Nous avons aussi cherché à appréhender comment la race et la fertilité du milieu pouvaient moduler la faisabilité d'un tel pâturage tournant et son intérêt vis-à-vis de la préservation de la biodiversité. Indépendamment de leur race, les brebis ont présenté une sélection alimentaire accrue vis-à-vis des dicotylédones dans les parcelles pâturées en rotation, qui a rapidement entraîné une diminution de leur richesse floristique en comparaison des parcelles pâturées en continu. L'augmentation de l'intensité de floraison des sous parcelles temporairement exclues de la rotation a favorisé les bourdons, probablement en raison de l'augmentation de la ressource en pollen et en nectar. En revanche, ce mode de gestion n'a pas permis d'augmenter la densité ni la richesse spécifique des papillons et des carabes. Le bénéfice d'une mise en défens temporaire d'une partie des parcelles semble donc moindre qu'en pâturage bovin. Définir les dates de mises en défens par rapport à la floraison d'espèces indicatrices, moduler la durée de la mise en défens en fonction de la pousse de printemps, et prolonger l'exclusion de certaines parcelles en automne et en hiver sont autant de pistes qu'il nous reste à explorer, afin de déterminer les conditions d'application optimale d'une telle conduite.
|
363 |
Médiation et sélection de sources de données pour des organisations virtuelles distribuées à grande échellePomares, Alexandra 26 July 2010 (has links) (PDF)
La sélection de sources de données est un des processus des plus critiques pour les systèmes de médiation dans des contextes grande échelle. C'est le cas notamment des grandes organisations virtuelles où le grand nombre de sources de données, la distribution, l'hétérogénéité, la fragmentation et la duplication des données rendent difficile l'identification des sources pertinentes à l'évaluation d'une requête. Cette thèse aborde cette problématique et propose OptiSource, une stratégie de sélection de sources de données créée pour des tels contextes. OptiSource est particulièrement performante dans des configurations où un grand nombre de sources sont susceptibles de contribuer à une requête selon leur niveau intentionnel (schéma), mais seulement un petit nombre d'entre elles peuvent effectivement le faire au niveau extensionnel (le contenu). OptiSource propose un processus itératif basé sur la sélection des sources de données dominantes pour chaque condition de la requête. Les sources dominantes sont désignées selon leur contribution attendue. Cette estimation utilise un modèle qui priorise les sources en fonction du rôle qu'elles peuvent jouer dans la requête, et optimise la répartition des sous-requêtes en utilisant un modèle d'optimisation combinatoire. OptiSource fait partie d'un système de médiation créé pour organisations virtuelles qui peut choisir dynamiquement la stratégie de sélection de sources la plus approprié au contexte. Notre domaine d'application privilégié a été le médical. Nous avons validé nos propositions sur divers types de contextes de grande taille.
|
364 |
Méthodes pour l'analyse de grands volumes d'images appliquées à la détection précoce de la maladie d'Alzheimer par analyse de PDG-PET scansKodewitz, Andreas 18 March 2013 (has links) (PDF)
Dans cette thèse, nous explorons de nouvelles méthodes d'analyse d'images pour la détection précoce des changements métaboliques cérébraux causés par la maladie d'Alzheimer (MA). Nous introduisons deux apports méthodologiques que nous appliquons à un ensemble de données réelles. Le premier est basé sur l'apprentissage automatique pour créer une carte des informations de classification pertinente dans un ensemble d'images. Pour cela nous échantillonnons des blocs de voxels de l'image selon un algorithme de Monte-Carlo. La mise en oeuvre d'une classification basée sur ces patchs 3D a pour conséquence importante la réduction significative du volume de patchs à traiter, et l'extraction de caractéristiques dont l'importance est statistiquement quantifiable. Cette méthode s'applique à différentes caractéristiques de l'image et donc est adaptée à des types d'images très variés. La résolution des cartes produites par cette méthode peut être affinée à volonté et leur contenu informatif est cohérent avec les résultats antérieurs basés sur les statistiques sur les voxels obtenus dans la littérature. Le second apport méthodologique porte sur la conception d'un nouvel algorithme de décomposition de tenseur d'ordre important, adapté à notre application. Cet algorithme permet de réduire considérablement la consommation de mémoire et donc évite la surcharge de la mémoire. Il autorise la décomposition rapide de tenseurs, y compris ceux de dimensions très déséquilibrées. Nous appliquons cet algorithme en tant que méthode d'extraction de caractéristiques dans une situation où le clinicien doit diagnostiquer des stades MA précoce ou MCI (Mild Cognitive Impairment) en utilisant la TEP FDG seule. Les taux de classification obtenus sont souvent au-dessus des niveaux de l'état de l'art. Dans le cadre de ces tâches d'analyse d'images, nous présentons notre source de données, les scans de patients retenus et les pré-traitements réalisés. Les principaux aspects que nous voulons prendre en compte sont la nature volumétrique des données, l'information a priori disponible sur la localisation des changements métaboliques et comment l'identification des zones de changements métaboliques participe à la réduction de la quantité de données à analyser et d'extraire des caractéristiques discriminantes. Les méthodes présentées fournissent des informations précises sur la localisation de ces changements métaboliques. Les taux de classification allant jusqu'à 92,6% pour MA et 83,8% pour MCI. En outre, nous sommes capables de séparer les patients MCI stables des MCI patients évoluant vers la MA dans les 2 ans après l'acquisition du PET-scan avec un taux de classification de 84.7%. Ce sont des étapes importantes vers une détection fiable et précoce de la MA.
|
365 |
Modélisation et reconnaissance active d'objets 3D de forme libre par vision en robotiqueTrujillo-Romero, Felipe De Jesus 10 December 2008 (has links) (PDF)
Cette thèse concerne la robotique au service de l'Homme. Un robot compagnon de l'Homme devra manipuler des objets 3D courants (bouteille, verre...), reconnus et localisés à partir de données acquises depuis des capteurs embarqués sur le robot. Nous exploitons la Vision, monoculaire ou stéréo. Pour traiter de la manipulation à partir de données visuelles, il faut au préalable construire deux représentations pour chaque objet : un modèle géométrique 3D, indispensable pour contrôler la saisie, et un modèle d'apparence visuelle, nécessaire pour la reconnaissance. Cette thèse traite donc de l'apprentissage de ces représentations, puis propose une approche active de reconnaissance d'objets depuis des images acquises par les caméras embarquées. La modélisation est traitée sur un objet 3D isolé posé sur une table, ; nous exploitons des données 3D acquises depuis un capteur stéréo monté sur un bras manipulateur; le capteur est déplacé par le bras autour de l'objet pour acquérir N images, exploitées pour construire un modèle de type maillage triangulaire. Nous proposons d'abord une approche originale de recalage des vues partielles de l'objet, fondée sur des informations de pseudo-couleur générées à partir des points 3D acquis sur l'objet à apprendre ; puis une méthode simple et rapide, fondée sur la paramétrisation sphérique, est proposée pour construire un maillage triangulaire à partir des vues recalées fusionnées dans un nuage de points 3D. Pour la reconnaissance active, nous exploitons une simple caméra. L'apprentissage du modèle d'apparence pour chaque objet, se fait aussi en déplaçant ce capteur autour de l'objet isolé posé sur une table. Ce modèle est donc fait de plusieurs vues ; dans chacune, (1) la silhouette de l'objet est extraite par un contour actif, puis (2) plusieurs descripteurs sont extraits, globaux (couleur, signature de la silhouette, shape context calculés) ou locaux (points d'intérêt, couleur ou shape context dans des régions). Pendant la reconnaissance, la scène peut contenir un objet isolé, ou plusieurs en vrac, avec éventuellement des objets non appris ; nous proposons une approche active, approche incrémentale qui met à jour un ensemble de probabilités P(Obji), i=1 à N+1 si N objets ont été appris ; les objets inconnus sont affectés à la classe N+1 ; P(Obji) donne la probabilité qu'un objet de la classe i soit présent dans la scène. A chaque étape la meilleure position du capteur est sélectionnée en exploitant la maximisation de l'information mutuelle. De nombreux résultats en images de synthèse ou en images réelles ont permis de valider cette approche.
|
366 |
Motional, reactional and constitutional dynamics of iminesKovaricek, Petr 23 June 2014 (has links) (PDF)
Les travaux réalisées lors de cette thèse s'intéressent aux dynamiques de mouvement, de réaction et de constitution des fonctions imines. Les aldéhydes les plus réactives pour cette réaction de condensation ont été identifiées. Un processus d'échange intramoléculaire aléatoire rapide a été observé entre le salicylaldéhyde et l'éthylènediamine dont la vitesse est contrôlée par les substituants, la longueur de la chaîne amine, le solvant et la température. Cette observation conduità l'élaboration de mouvements de déplacement d'abord non-directionnels puis développés pour devenir directionnels. Une sélectivité dynamique réactionnelle a été introduite sur des mélanges d'aldéhydes et d'amines. Elle a été baptisée simpléxité et est utilisée pour de la protection de fonctions. Enfin, la nature dynamique de l'imine a été étudiée à l'interface solide-liquide parmicroscopie à effet tunnel et montre une accélération et une amplification des produits formées sur la surface.
|
367 |
Outil d'aide au diagnostic du cancer à partir d'extraction d'informations issues de bases de données et d'analyses par biopucesHedjazi, Lyamine 08 December 2011 (has links) (PDF)
Le cancer est l'une des causes les plus fréquentes de décès dans le monde. Actuellement, le cancer du sein est le plus répandu dans les cancers féminins. Malgré les avancées significatives faites ces dernières décennies en vue d'améliorer la gestion du cancer, des outils plus précis sont toujours nécessaires pour aider les oncologues à choisir le traitement nécessaire à des fins de guérison ou de prévention de récidive tout en réduisant les effets néfastes des ces traitements ainsi que leurs coûts élevés. Ce travail porte sur l'utilisation de techniques d'apprentissage automatique pour développer de tels outils de gestion du cancer du sein. Les facteurs cliniques, tels que l'âge du patient et les variables histo-pathologiques, constituent encore la base quotidienne de prise de décision pour la gestion du cancer du sein. Cependant, avec l'émergence de la technologie à haut débit, le profil d'expression génique suscite un intérêt croissant pour construire des outils plus précis de prédiction du cancer du sein. Néanmoins, plusieurs challenges doivent être relevés pour le développement de tels outils, principalement: (1) la dimensionnalité des données issues de la technologie des puces, (2) le faible rapport signal sur bruit dans la mesure de biopuces, (3) l'incertitude d'appartenance des patients aux différents groupes du cancer, et (4) l'hétérogénéité des données présentes habituellement dans les bases de données cliniques. Dans ce travail, nous proposons quelques approches pour surmonter de manière appropriée de tels challenges. Une première approche aborde le problème de haute dimensionnalité des données en utilisant les capacités d'apprentissage dit normé ℓ1 pour la conception d'un algorithme de sélection de variables intégré à la méthode SVM (machines à vecteurs supports), algorithme basé sur une technique de gradient. Une deuxième approche permet de gérer simultanément tous les problèmes, en particulier l'intégration de plusieurs sources de données (cliniques, pu ces à ADN, ...) pour construire des outils prédictifs plus précis. Pour cela, un principe unifié est proposé pour surmonter le problème de l'hétérogénéité des données. Pour tenir compte de l'incertitude d'appartenance et augmenter l'interprétabilité du modèle, ce principe est proposé dans le cadre de la logique floue. Par ailleurs, afin d'atténuer le problème du bruit de niveau élevé, une approche symbolique est proposée suggérant l'utilisation de la représentation par intervalle pour modéliser les mesures bruitées. Nous avons conçu en particulier, basée sur ce principe, une approche floue supervisée de pondération de variables. Le processus de pondération repose essentiellement sur la définition d'une marge d'appartenance pour chaque échantillon. Il optimise une fonction objective basée sur la marge d'appartenance afin d'éviter la recherche combinatoire. Une extension de cette approche au cas non supervisé est effectuée pour développer un algorithme de regroupement automatique basé sur la pondération des règles floues. L'efficacité de toutes les approches a été évaluée par des études expérimentales extensives, et comparée avec des méthodes bien connues de l'état de l'art. Enfin, un dernier travail est consacré à des applications des approches proposées dans le domaine du cancer du sein. En particulier, des modèles prédictifs et pronostiques ont été extraits à partir des données de puces à ADN et/ou des données cliniques, et leurs performances comparées avec celles d'approches génétiques et cliniques existantes.
|
368 |
Trois essais sur la dynamique des firmes en présence de contraintes financières et de chocs macroéconomiquesWang, Qiwei 12 December 2013 (has links) (PDF)
La thèse est composée de trois articles de recherche. Basés sur le même fondement théorique et de modélisation, au travers de simulation numérique, les trois essais étudient différents sujets liés à la dynamique des firmes sous l'impact des contraintes financières et des fluctuations macroéconomiques. Respectivement, le premier article explore le mécanisme de sélection de marché, le deuxième se focalise sur le mode d'investissement en Recherche et Développement (R&D) des firmes, et le troisième analyse les effets d'une politique budgétaire discrétionnaire de relance de l'activité sur la dynamique des firmes. Les résultats de recherche montrent que la combinaison des contraintes financières et des fluctuations macroéconomiques peut exercer des effets significatifs sur la dynamique des firmes dans un contexte de compétition de marché. Sous différents angles d'analyse, ces effets peuvent révéler l'inefficacité du mécanisme de sélection de marché, la distorsion de structure de marché à la défaveur des investissements en R&D, et des retombées inégalitaires d'une éventuelle relance économique en période de récession, au désavantage des jeunes et petites firmes.
|
369 |
Une approche déclarative pour la modélisation et la résolution du problème de la sélection de vues à matérialiserMami, Imene 15 November 2012 (has links) (PDF)
La matérialisation de vues est une technique très utilisée dans les systèmes de gestion de bases de données ainsi que dans les entrepôts de données pour améliorer les performances des requêtes. Elle permet de réduire de manière considérable le temps de réponse des requêtes en pré-calculant des requêtes coûteuses et en stockant leurs résultats. De ce fait, l'exécution de certaines requêtes nécessite seulement un accès aux vues matérialisées au lieu des données sources. En contrepartie, la matérialisation entraîne un surcoût de maintenance des vues. En effet, les vues matérialisées doivent être mises à jour lorsque les données sources changent a fin de conserver la cohérence et l'intégrité des données. De plus, chaque vue matérialisée nécessite également un espace de stockage supplémentaire qui doit être pris en compte au moment de la sélection. Le problème de choisir quelles sont les vues à matérialiser de manière à réduire les coûts de traitement des requêtes étant donné certaines contraintes tel que l'espace de stockage et le coût de maintenance, est connu dans la littérature sous le nom du problème de la sélection de vues. Trouver la solution optimale satisfaisant toutes les contraintes est un problème NP-complet. Dans un contexte distribué constitué d'un ensemble de nœuds ayant des contraintes de ressources différentes (CPU, IO, capacité de l'espace de stockage, bande passante réseau, etc.), le problème de la sélection de vues est celui de choisir un ensemble de vues à matérialiser ainsi que les nœuds du réseau sur lesquels celles-ci doivent être matérialisées de manière à optimiser les coût de maintenance et de traitement des requêtes. Notre étude traite le problème de la sélection de vues dans un environnement centralisé ainsi que dans un contexte distribué. Notre objectif est de fournir une approche efficace dans ces contextes. Ainsi, nous proposons une solution basée sur la programmation par contraintes, connue pour être efficace dans la résolution des problèmes NP-complets et une méthode puissante pour la modélisation et la résolution des problèmes d'optimisation combinatoire. L'originalité de notre approche est qu'elle permet une séparation claire entre la formulation et la résolution du problème. A cet effet , le problème de la sélection de vues est modélisé comme un problème de satisfaction de contraintes de manière simple et déclarative. Puis, sa résolution est effectuée automatiquement par le solveur de contraintes. De plus, notre approche est flexible et extensible, en ce sens que nous pouvons facilement modéliser et gérer de nouvelles contraintes et mettre au point des heuristiques pour un objectif d'optimisation. Les principales contributions de cette thèse sont les suivantes. Tout d'abord, nous dé finissons un cadre qui permet d'avoir une meilleure compréhension des problèmes que nous abordons dans cette thèse. Nous analysons également l'état de l'art des méthodes de sélection des vues à matérialiser en en identifiant leurs points forts ainsi que leurs limites. Ensuite, nous proposons une solution utilisant la programmation par contraintes pour résoudre le problème de la sélection de vues dans un contexte centralisé. Nos résultats expérimentaux montrent notre approche fournit de bonnes performances. Elle permet en effet d'avoir le meilleur compromis entre le temps de calcul nécessaire pour la sélection des vues à matérialiser et le gain de temps de traitement des requêtes à réaliser en matérialisant ces vues. Enfin, nous étendons notre approche pour résoudre le problème de la sélection de vues à matérialiser lorsque celui-ci est étudié sous contraintes de ressources multiples dans un contexte distribué. A l'aide d'une évaluation de performances extensive, nous montrons que notre approche fournit des résultats de qualité et fi ables.
|
370 |
Contrôle autonome d'opérateurs pour la recherche localeVeerapen, Nadarajen 29 November 2012 (has links) (PDF)
Au fil des années, un nombre croissant de méthodes de résolution ont été proposées afin de traiter des problèmes plus grands et plus complexes. Parmi ces méthodes, les métaheuristiques sont largement utilisées dans le monde académique et industriel afin de résoudre efficacement des problèmes d'optimisation et de satisfaction de contraintes. Toutefois la conception de métaheuristiques de plus en plus performantes produit souvent des systèmes fortement complexes dont l'utilisation demande une expertise non négligeable aussi bien du problème lui-même que de la façon de paramétrer la méthode de résolution. Concevoir des algorithmes de recherche autonomes est donc une question importante. Cette thèse traite du problème de la gestion et de la sélection d'opérateurs dans le contexte de la recherche locale, au sein d'un contrôleur générique. Celui a pour but de pouvoir être réutilisé facilement pour traiter différents problèmes. Nous nous attachons donc à concevoir des méthodes simples et robustes. La sélection des opérateurs se base sur un apprentissage des performances antérieures de chaque opérateur afin de déterminer les opérateurs vraisemblablement les plus bénéfiques à chaque pas de la recherche. Pour effectuer ces choix, le contrôleur se base sur la capacité des opérateurs à améliorer la qualité des solutions ainsi que sur la faculté de produire des solutions qui diffèrent de celles déjà obtenues. Les méthodes proposées sont testées sur différents problèmes théoriques et pratiques d'optimisation combinatoire et de satisfaction de contraintes. Les résultats obtenus montrent qu'il est possible d'obtenir des résultats corrects avec des méthodes simples. Les mécanismes adaptatifs proposés se révèlent robustes sur différents problèmes.
|
Page generated in 0.0919 seconds