Spelling suggestions: "subject:"séparer"" "subject:"séparant""
1 |
Combinatorial rigidity of complexes of curves and multicurvesHernández Hernández, Jesús 13 May 2016 (has links)
On suppose que S=Sg,n est un surface connexe orientable de type topologique fini, de genre g≥3 et n≥0 épointements. Dans les chapitres 1 et 2 on décrit l'ensemble principal d'une surface et prouve que en utilisant expansions rigides itérés, on peut créer suites croissantes d'ensembles finis qui sa réunion est le complexe des courbes de la surface C(S). Dans le 3ème chapitre on introduit l'ensemble rigide X(S) de Aramayona et Leininger et l'utilise pour montrer que la suite des chapitres précédents est eventuellement une suite d'ensembles rigides. On utilise cela pour prouver que si Si=Sgi,ni pour i=1,2 sont surfaces telles que k(S1)≥k(S2) et g1≥3, toute application qui préserve les arêtes de C(S1) dans C(S2) est induite par un homéomorphisme. Ceci est utilisé pour montrer un résultat similaire pour les homomorphismes de sous-groupes de Mod*(S1) dans Mod*(S2). Dans le 4ème chapitre on utilise les résultats précédents pour prouver que l'unique façon d'obtenir une application qui préserve les arêtes et qui est alternante du graphe de Hatcher-Thurston de S1, HT(S1), dans soi de S2, HT(S2) est en utilisant un homéomorphisme de S1 et puis piquer la surface n fois pour obtenir S2. Ceci implique que toute application qui préserve les arêtes et qui est alternante de HT(S) dans soi même et aussi tous les automorphismes de HT(S), sont induits par homéomorphismes. Dans le 5ème chapitre on montre que toute application super-injective du graphe des courbes qui ne sépare pas et courbes extérieures de S1, NO(S1), dans soi de S2, NO(S2), est induite par un homéomorphisme. Finalement, dans les conclusions on discute la signifiance des résultats et les façons possibles d'étendre leur. / Suppose S = Sg,n is an orientable connected surface of finite topological type, with genus g ≥ 3 and n ≥ 0 punctures. In the first two chapters we describe the principal set of a surface, and prove that through iterated rigid expansions we can create an increasing sequence of finite sets whose union in the curve complex of the surface C(S). In the third chapter we introduced Aramayona and Leininger's finite rigid set X(S) and use it to prove that the increasing sequence of the previous two chapters becomes an increasing sequence of finite rigid sets after, at most, the fifth iterated rigid expansion. We use this to prove that given S1 = Sg1,n1 and S2 = Sg2,n2 surfaces such that k(S1) ≥ k(S2) and g1 ≥ 3, any edge-preserving map from C(S1) to C(S2) is induced by a homeomorphism from S1 to S2. This is later used to prove a similar statement using homomorphisms from certain subgroups of Mod*(S1) to Mod*(S2). In the fourth chapter we use the previous results to prove that the only way to obtain an edge-preserving and alternating map from the Hatcher-Thurston graph of S1 = Sg,0, HT(S1), to the Hatcher-Thurston graph of S2 = Sg,n, HT(S2), is using a homeomorphism of S1 and then make n punctures to the surface to obtain S2. As a consequence, any edge-preserving and alternating self-map of HT(S) as well as any automorphism is induced by a homeomorphism. In the fifth chapter we prove that any superinjective map from the nonseparating and outer curve graph of S1, NO(S1), to that of S2, NO(S2), is induced by a homeomorphism assuming the same conditions as in the previous chapters. Finally, in the conclusions we discuss the meaning of these results and possible ways to expand them.
|
Page generated in 0.0316 seconds