Spelling suggestions: "subject:"same drinking water act""
1 |
A Comparative Analysis of Wellhead Protection: Virginia and MassachusettsRaftery, Kelley Lynne 12 June 2002 (has links)
Proactive drinking water programs assist communities in the long-term protection of their water supply. The 1986 amendments to the Safe Drinking Water Act (SDWA) seek to protect groundwater sources of public drinking water. 42 United States Code Section 300h-7 created the Wellhead Protection Program. The 1986 SDWA Amendments require all states to submit a Wellhead Protection Program for public groundwater drinking sources. The 1996 SDWA Amendments require all states to submit Source Water Assessment Plans for both groundwater and surface water sources. The 1986 and 1996 SDWA Amendments aim to protect public health by preventing contamination of drinking water sources.
<p>
This paper compares and contrasts the effectiveness of groundwater Wellhead Protection Programs (WHPP) in Virginia and Massachusetts. These states take different management approaches to protect public groundwater drinking sources. Virginia encourages local governments to participate voluntarily in wellhead protection activities. Massachusetts requires all municipal and private suppliers that provide public drinking water to adopt a WHPP. The relative success achieved by Massachusetts and Virginia was evaluated with two measures: percentage of wellhead protection programs implemented and the percentage of state reported drinking water quality violations. / Master of Urban and Regional Planning
|
2 |
High-Frequency Nitrate Monitoring in Dynamic River Systems: the Case of Three Iowa Rivers in the Mississippi BasinBanerjee, Malini De 01 July 2013 (has links)
High frequency water quality monitoring presents unique and unlimited opportunities of exploring spatio-temporal variation in water quality. Knowledge gained from analyzing high frequency water quality data can provide more clarity regarding transportation and processing of water constituents over time and space and scale. This study analyzes high frequency discharge, nitrate load and concentration data for three watersheds of different sizes - Cedar River Watershed, North Raccoon and Middle Raccoon. Each of these sites were monitored for 2-3 calendar years.
Sudden spikes in discharge, nitrate concentration and load data, also defined as "events" were analyzed in great detail to understand the patterns in event occurrence and event intensity. Smaller watersheds seemed to have sharper and "flashier" events compared to bigger watersheds. Nitrate concentration events were flatter in shape compared to discharge and nitrogen load events. The relationship between nitrogen concentration and discharge was found to be varying over time, unlike the relationship between nitrate load and discharge, which were almost perfectly correlated for most site-year combinations.
Based on more than 40,000 simulations, it was determined that high frequency water quality sampling is not only efficient in capturing minute spatio-temporal variations but can also capture nitrate exceedances to a greater degree. High frequency sampling was also associated with higher yield ratio in nitrate load estimates, not only during high flow periods, but also during the non-high-flow period.
|
3 |
Environmental impacts of toxic substances: improving coastal resiliency in FloridaKorman, Aaron Manuel 01 October 2021 (has links)
Anthropogenic effects are causing significant environmental degradation, and regardless of actions taken to mitigate further changes, humans and animals will have to live with these impacts (IPCC 2019). Rapid population growth in coastal regions, saltwater intrusion (SWI), lowering water quality, and increased presence of toxic materials are degrading coastal resiliency. An important and popular coastal region for the United States is the state of Florida, and it is also an area extremely vulnerable to aspects of climate change such as sea-level rise (SLR) (Noss 2011). This project analyzes how the state is currently experiencing the direct and indirect impacts of toxic materials on the state’s people, environment, and economy. It will do so through analysis of the performance of federal legislation created with the intent to protect human and environmental health, quantification of current rates of using toxic chemicals and potential pollution, as well as quantifying effects of both anthropogenic and natural toxic materials on Florida’s housing market.
It was anticipated that legislation such as the Safe Drinking Water Act (SDWA) to ensure strict enforcement of drinking water standards and the Emergency Planning Community Right to Know Act (EPCRA) to prevent toxic pollution would be present in the vulnerable region. Also that natural phenomenon such as the harmful algal blooms significantly degrade the housing market through decreasing income through tourism and lowering housing prices in coastal neighborhoods.
This project found that the SDWA is not being enforced, EPCRA data shows a huge risk to potential exposures from large storms, and that algal blooms are significant to housing prices in the state. Using these scientific findings to improve policy and appropriately communicating complex scientific topics to the public is extremely important. Doing so will enable a higher level of coastal resiliency as communities continue attempt to mitigate climate change, but also learn to understand current impacts and better live in a degrading environment.
|
4 |
AN INTERNSHIP IN WATER UTILITY STAKEHOLDER RELATIONSVieux, Micah Steven 09 May 2013 (has links)
No description available.
|
5 |
OUTREACH COORDINATOR FOR THE UNREGULATED CONTAMINANT MONITORING REGULATION: AN INTERNSHIP WITH THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCYWagner, Cory J. January 2003 (has links)
No description available.
|
Page generated in 0.135 seconds