• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Survival Strategies Of SALMONELLA

Sandeepa, M E 07 1900 (has links)
The genus Salmonella includes facultative intracellular pathogens. Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever in humans killing about 2,00,000 people globally every year. Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis) cause food poisoning in humans. Salmonellae also cause disease in animals of economic importance like poultry and cattle. Treatment of diseases caused by these notorious pathogens is becoming more and more difficult because of the emergence of drug resistant strains. Thus, it is vital to understand the virulence mechanisms of Salmonella which can lead us to potential drug targets and also help us design effective vaccines. Salmonella has evolved many strategies to enter the host, to evade intracellular and extracellular antimicrobial activities of the host and to extract nutrition in the stringent and hostile environment of the host. These strategies have enabled Salmonella to survive and multiply in the host making it a successful pathogen. Present study deals with four such survival strategies of Salmonella. S. Typhimurium causes a systemic disease in mice that is similar to typhoid fever caused by serovar Typhi in humans. This serves as a good model system to study and understand the pathogenesis of Salmonellae. This model system has been used throughout this study. In the present thesis attempts have been made to identify some novel survival strategies of Salmonella. The thesis is divided into five chapters. Chapter 1 gives an introduction into the basic biology of these notorious pathogens. The diseases caused by Salmonellae are introduced in this chapter. Typhoid fever is discussed in detail covering its epidemiology, clinical features, diagnosis, treatment and prevention. Next section covers the virulence determinants of Salmonella. In this section, Salmonella pathogenicity islands are discussed in detail. This chapter concludes with an overview of molecular pathogenesis of Salmonella covering its invasion strategy and its dangerous life inside the host cell. Salmonella stays and multiplies inside a specialized endosomal compartment of the host cell known as Salmonella-containing vacuole (SCV). It is believed that Salmonella multiplies inside SCV resulting in single big vacuole containing multiple bacteria. The results of Chapter 2 challenge this notion. Using transmission electron microscopy and confocal laser scanning microscopy we show that SCV also divides along with the division of Salmonella resulting in multiple SCVs containing single bacterium per vacuole. We also show that this division is mediated by the molecular motor dynein. This chapter concludes with a discussion on the advantages of SCV division with respect to Salmonella. Successful intracellular pathogens must have some strategy either to avoid lysosomal fusion or to endure the toxic molecules of lysosomes. In case of Salmonella, it is well accepted that SCV-lysosome fusion is blocked. However, the exact mechanism of this process is still unclear. The results of Chapter 3 enhance our understanding of this issue. This chapter explores an interesting possibility of Salmonella reducing the lysosomal number and thereby reducing the chances of SCV-lysosome fusion. Using flowcytometry and confocal laser scanning microscopy, we show that Salmonella decreases the number of acidic lysosomes in murine macrophages. Thus, our results suggest that there is an imbalance in the ratio of vacuoles to acidic lysosomes which decreases the probability of SCV-lysosome fusion thereby helping Salmonella avoid lysosomes. Multicellular organisms use various defense strategies to protect themselves from microbial infections; production of antimicrobial peptides (AMPs) is one of them. Being cationic in nature, AMPs interact and cause pores in the bacterial membrane eventually killing the bacteria. Pathogenic micro-organisms like Salmonella have evolved many strategies to counteract the AMPs they encounter upon their entry into the host systems. S Typhimurium genome has a gene cluster consisting of yejA, yejB, yejE and yejF genes which encode a putative ABC transporter. Chapter 4 deals with the detailed characterization of these genes. Our study shows that these genes constitute an operon. We have deleted the yejF gene which encodes the ATPase component of this putative ABC transporter. The ΔyejF strain showed increased sensitivity to AMPs like protamine, melittin, polymyxin B and human defensins and was compromised to proliferate inside activated macrophages and epithelial cells. In murine typhoid model, the ΔyejF strain displayed decreased virulence when infected intragastrically. These findings suggest that the putative transporter encoded by the yejABEF operon is involved in counteracting AMPs and contributes to the virulence of Salmonella. An important biochemical property of Salmonella that distinguishes it from the closely related E. coli is its inability to ferment lactose. In E. coli, lactose fermentation is carried out by the products of lac operon which is regulated by a repressor encoded by lacI. Salmonella does not have the lac operon and lacI. It has been proposed that S.enterica has lost lac region (lacI and lacZYA) during its evolution. Chapter 5 deals with the evolutionary and physiological significance behind the loss of lac region by S.enterica. We show that expression of LacI in S. enterica suppresses its virulence by interfering with the expression of SPI-2 virulence genes. We also observed that the genome of S. bongori which does not have the virulence genes of SPI-2 has a homologue of LacI. Our results suggest that presence of lacI has probably hindered the acquisition of virulence genes of SPI-2 in S. bongori, whereas absence of lacI has facilitated the same in S. enterica making it a successful systemic pathogen. Thus, lacI has played a remarkable role in the evolution of Salmonella virulence. Brief summary of four studies that are not directly related to survival strategies of Salmonella are included in Appendix. First two studies analyze molecular evolution of SPIs to understand the mechanism of host specificity in Salmonella and the last two studies explore the signaling of lipopolysaccharide (LPS) derived from Salmonella.
2

Racemases in Salmonella : Insights into the Dexterity of the Pathogen

Iyer, Namrata January 2014 (has links) (PDF)
Chapter -I Introduction Salmonella is a pathogen well-known for its ability to infect a wide variety of hosts and causes disease ranging from mild gastroenteritis to typhoid fever. During infection, it is exposed to a myriad of conditions; from the aquatic environment, the gut lumen to the phagolysosome. The success of Salmonella as a pathogen lies in its ability to sense each of these environments and adapt itself for survival and proliferation accordingly. This is done mainly via the action of specific two-component systems (TCSs) which sense cues specific to each of these niches and trigger the appropriate transcriptional reprogramming. This reprogramming is best studied for the genes directly known to be involved in virulence. In the case of Salmonella, most of these genes are a part of specific clusters, acquired through horizontal gene transfer, known as Salmonella Pathogenicity Islands (SPIs). Of the various SPIs, the two most important are SPI-1 and SPI-2. SPI-1 is classically involved in orchestrating bacterial invasion of non-phagocytic cells in the gut, allowing the pathogen to invade the host. Furthermore, its role is well characterized in the classic inflammation associated with gastroenteritis. On the other hand, SPI-2 is specialized for survival within the harsh intracellular environment of host cells such as macrophages and epithelial cells. Other important virulence determinants include motility, chemotaxis as well as adhesins. The transcription of these virulence genes is under tight regulation and responsive to environmental conditions. Many small molecules such as short chain fatty acids, pp(p)Gpp, bile and acyl homoserine lactones among others are known to be potent regulators of virulence in Salmonella. Furthermore, the metabolic products of the normal flora in the gut also affect its virulence. Thus the metabolic status, of both the host as well as the pathogen, plays an important role in determining the outcome of the infection. Many metabolic enzymes and their products are now known to directly or indirectly affect virulence gene expression. In this study, we explore one such class of metabolic enzymes viz amino acid racemases. They catalyze the chiral conversion of L-amino acids to D-amino acids and vice versa. We have studied the biochemical properties of two such non-canonical racemases as well as their role in bacterial survival and pathogenesis. Chapter-II Identification and characterization of putative aspartate racemases in Salmonella Amino acid racemases, such as alanine and glutamate racemases, are ubiquitously found in all bacteria and they play an essential role in cell wall biosynthesis. Recently it has been found, that bacteria possess other amino acid racemases which produce non-canonical D-amino acids. These D-amino acids, upon secretion, further orchestrate various phenotypes such as cell wall remodeling and biofilm dispersal. In this study, we have explored the ability of Salmonella to produce such non-canonical D-amino acids. The genome of S. Typhimurium possesses genes encoding two putative aspartate racemases; ygeA and aspR. These genes were maximally expressed in mid-log phase of bacterial growth and their corresponding proteins ar localized in the outer membrane of the bacterium. The biochemical characterization of the proteins YgeA and AspR revealed that only the latter is catalytically active under in vitro conditions. AspR could catalyze the conversion of L-Aspartate to D-Aspartate and vice versa, however was unable to use any other amino acid as its substrate. With atleast one of the racemases showing catalytic activity, the profiling of the secreted D-amino acids in Salmonella conditioned medium was undertaken using LC-MS. It was observed that the bacterium actively secreted specific D-amino acids such as D-Ala and D-Met into the culture medium in a growth-phase dependent manner. Furthermore, analysis of the secreted D-amino acid profile of the strains lacking either one or both the racemases revealed that atleast a subset of the secreted D-amino acids were dependent on the activity of YgeA and AspR. Thus, D-amino acids secreted by S. Typhimurium might represent a novel class of signaling molecules. Chapter – III Role of aspartate racemases in growth and survival of S. Typhimurium In order to understand the role of ygeA and aspR in vivo, we created knockouts of these genes (both single as well as double knockout) in S. Typhimurium using λ Red recombinase strategy. These knockouts were then assessed for their growth and morphology. The aspartate racemase knockouts behave similar to the wild type during growth in LB as well as M9 minimal medium. While their gross morphology remained the same as the wild type, the size distribution of the racemase knockouts was slightly different in the stationary phase. Unlike the wild type bacteria, the mutants did not exhibit the characteristic reduction in cell size upon entry into stationary phase. In addition, the survival of the mutants in the presence of cell wall damaging agents such as bile and Triton-X 100 was compromised as compared to the wild type. This can be ascribed to changes in the cell wall of the bacterium, wherein the mutants accumulated peptidoglycan in the stationary phase of growth. This suggests that aspartate racemases might have an effect on cell wall biosynthesis in Salmonella in the stationary phase. Another important strategy employed by bacteria to survive in stress conditions is biofilm formation. It was seen that the mutants were compromised in their ability to form a biofilm at the liquid-air interface in vitro. This defect is due to a transcriptional downregulation of the genes required for biofilm formation. These results demonstrate that, contrary to the established inhibitory effects of D-amino acids on biofilms of various bacteria, the aspartate racemases appear to act as positive regulators of biofilm formation in Salmonella. Chapter – IV Involvement of aspartate racemases in the regulation of Salmonella pathogenesis Salmonella’s success as a pathogen can be broadly assessed by its ability to invade and replicate within two major cell types: epithelial cells and macrophage-like cells. We have studied the fate of the aspartate racemase knockout strains in both these cell types. While the mutants replicate as well as the wild type in macrophage cell lines, their ability to invade epithelial cell lines is highly compromised. This defect can be ascribed to the downregulation of the Salmonella Pathogenicity Island-1 (SPI-1) in the racemase knockouts at the transcriptional level. One of the major pathways that regulate SPI-1 activation is the flagellar pathway. It was observed that in addition to SPI-1, the motility of the racemase mutants was also highly compromised. The mutants did not possess any flagella and showed a high transcriptional downregulation of all the three classes of flagellar genes. Transcriptome analysis revealed a global reprogramming in the aspartate racemase mutants, resulting in the differential regulation of motility, adhesion, amino acid transport, cell wall biosynthesis and other pathways. Of the genes upregulated in the knockouts, FimZ is known for its negative effect on motility and might be responsible for the observed downregulation of the flagellar regulon. This suggests that ygeA and aspR might be repressors of fimbrial gene expression. In totality, the racemases affected the pathogenesis of Salmonella, where the double knockout was severely compromised in the colitis model of infection. Overall the study is the first to identify secretion of non-canonical D-amino acids by Salmonella and suggests that YgeA and AspR might be the source of the same. This is supported in part by in vitro studies with the purified proteins. Studies in vivo further highlight the possible substrates that might be utilized by these enzymes. Physiologically, the aspartate racemases appear to regulate cell wall remodeling and biofilm formation. In contrast to the established literature, aspartate racemases (and their possible D-amino acid products) seem to be essential for formation of biofilms and regulate this phenotype at the transcriptional level. Furthermore, our studies put forth aspartate racemases as novel positive regulators of Flagella and SPI-1, affecting the success of Salmonella in the colitis model of infection in mice. Transcriptome analysis hints at the pleiotropic effects of aspartate racemases in Salmonella, bringing forth hitherto unexplored roles for this class of enzymes in the biology of this pathogen.

Page generated in 0.1137 seconds