• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 51
  • 9
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 132
  • 132
  • 47
  • 45
  • 20
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Modulation of soybean and maize antioxidant activities by Caffeic acid and nitric oxide under salt stress

Klein, Ashwil Johan January 2012 (has links)
Philosophiae Doctor - PhD / This study explores the roles of exogenously applied nitric oxide, exogenously applied caffeic acid and salt stress on the ontioxidant system in cereal (exemplified by maize) and legume (using soybean as an example) plants together with their influence on membrane integrity and cell death. This study investigates changes in H₂O₂ content, root lipid peroxidation, root cell death and antioxidant enzymatic activity in maize roots in response to exogenously applied nitric oxide (NO) and salt stress. This part of the study is based on the partially understood interaction between NO and reactive oxygen species (ROS) such as H₂O₂ and the role of antioxidant enzymes in plant salt stress responses. The results show that application of salt (NaCl) results in elevated levels of H₂O₂ and an increase in lipid peroxidation, consequently leading to increased cell death. The study also shows that by regulating the production and detoxification of ROS through modulation of antioxidant enzymatic activities, NO plays a pivotal role in maize responses to salt stress. The study argues for NO as a regulator of redox homeostasis that prevents excessive ROS accumulation during exposure of maize to salinity stress that would otherwise be deleterious to maize. This study extends the role of exogenously applied NO to improve salt stress tolerance in cereals crops (maize) further to its role in enhancing salt stress tolerance in legumes. The effect of long-term exposure of soybean to NO and salt stress on root nodule antioxidant activity was investigated to demonstrate the role of NO in salt stress tolerance. The results show that ROS scavenging antioxidative enzymes like SOD, GPX and GR are differentially regulated in response to exogenous application of NO and salt stress. It remains to be determined if the NO induced changes in antioxidant enzyme activity under salt stress are sufficient to efficiently reduce ROS accumulation in soybean root nodules to levels close to those of unstressed soybean root nodules. Furthermore, this study investigates the effect of long-term exposure of soybean to exogenous caffeic acid (CA) and salt stress, on the basis of the established role of CA as an antioxidant and the involvement of antioxidant enzymes in plant salt stress responses. The effect of CA on soybean nodule number, biomass (determined on the basis of nodule dry weight, root dry weight and shoot dry weight), nodule NO content, and nodule cyclic guanosine monophosphate (cGMP) content in response to salt stress was investigated. Additionally, CA-induced changes in nodule ROS content, cell viability, lipid peroxidation and antioxidant enzyme activity as well as some genes that encode antioxidant enzymes were investigated in the presence or absence of salt stress. The study shows that long-term exposure of soybean to salt stress results in reduced biomass associated with accumulation of ROS, elevated levels of lipid peroxidation and elevated levels of cell death. However, exogenously applied CA reversed the negative effects of salt stress on soybean biomass, lipid peroxidation and cell death. CA reduced the salt stress-induced accumulation of ROS by mediating changes in root nodule antioxidant enzyme activity and gene expression. These CA-responsive antioxidant enzymes were found to be superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR), which contributed to the scavenging of ROS in soybean nodules under salt stress. The work reported in Chapter 2 has been published in a peer-reviewed journal [Keyster M, Klein A, Ludidi N (2012) Caspase-like enzymatic activity and the ascorbate-glutathione cycle participate in salt stress tolerance of maize conferred by exogenously applied nitric oxide. Plant Signaling and Behavior 7: 349-360]. My contribution to the published paper was all the work that is presented in Chapter 2, whereas the rest of the work in the paper (which is not included in Chapter 2) was contributed by Dr Marshall Keyster.
102

Modulation of soybean and maize antioxidant activities by caffeic acid and nitric oxide under salt stress

Klein, Ashwil Johan January 2012 (has links)
Philosophiae Doctor - PhD
103

Physiological and Biochemical Responses of Bald Cypress to Salt Stress

Lauer, Nathan T. 01 January 2013 (has links)
Bald Cypress (Taxodium distichum (L.) Rich.) is native to freshwater wetlands of Florida. The vitality of cypress within coastal freshwater wetlands is threatened by saltwater intrusion. Biomarkers to detect sub-lethal salinity stress were developed using a controlled greenhouse study. Cypress saplings maintained at elevated salinities of 4 and 8‰ exhibited a decrease in maximum quantum yield (MQY) and an increase in non-photochemical quenching (NPQ). Cypress leaves exhibited an increase in Na+, H2O2, and free proline content compared to plants maintained in freshwater. These biomarkers were used to detect salinity stress within a population of cypress associated with the lower St. Johns River where saltwater intrusion is occurring. Cypress in a basin swamp exhibited signs of salinity stress with low MQY and elevated NPQ values compared to Cypress at other sites. Cypress leaves at the basin swamp also had the highest Na+, lipid peroxidation, and proline content compared to plants at other sites. Detached Cypress leaf experiments were conducted to explore the mechanisms of salt tolerance. Detached cypress leaves were first exposed to elevated NaCl concentrations for 24, 48, or 72 hours. Elevated salinity caused a decrease in leaf transpiration for all times tested. Total peroxidase activity exhibited an increase in response to salt stress after 48 hours. Enhanced peroxidase activity was found to be associated with the induction of a ~37 kDa peroxidase isoform. Treatment of leaves with clofibrate caused an increase in activity of the ~37 kDa peroxidase. Pre-treatment of leaves with brefeldin A (BFA) blocked the induction of the ~37 kDa peroxidase associated with salt stress. Pre-treatment of Cypress leaves with diphenyliodonium (DPI) blocked the decrease in transpiration associated with salt stress, suggesting that H2O2 is enzymatically produced within the stomata in response to salt stress
104

Transports de Na+ et K+ chez le riz : caractérisation de transporteurs et co-transporteurs de Na+ et K+ de la famille HKT / K+ and Na+ transports in rice : characterization of Na+ and K+ transporters and co-transporters of the HKT family

Sassi, Ali 12 December 2011 (has links)
Un prélèvement efficace de K+ à partir du sol est essentiel au développement des végétaux. Sur un sol riche en NaCl, le maintien d'un prélèvement sélectif et efficace de K+ à partir du sol et le contrôle de l'exportation de Na+ par la racine vers les feuilles constituent des fonctions essentielles pour la survie de la plante. Chez les plantes, les transporteurs HKT (High-affinity K+ Transporters) sont classés en deux sous-familles sur des bases phylogénétiques et de sélectivité ionique. Les membres de la sous-famille 1 transportent sélectivement Na+. Plusieurs d'entre eux ont été identifiés comme des acteurs majeurs de l'adaptation des plantes aux fortes salinités du sol en prévenant l'accumulation de Na+ dans les parties aériennes. Les membres de la sous-famille 2 co-transportent Na+ et K+. Leur rôle dans la plante, notamment dans le transport de K+, est encore mal compris. Je me suis intéressé à différents systèmes de transports de K+ et Na+, appartenant essentiellement à la famille HKT chez le riz. La caractérisation que j'ai effectuée a fait appel à plusieurs approches : électrophysiologie (voltage-clamp après expression en ovocyte de xénope), biologie cellulaire, génétique inverse et PCR en temps réel. L'analyse de l'expression par RT-PCR en temps réel de toute la famille HKT (4 membres dans chacune des deux sous-familles) a montré que ces transporteurs sont différemment exprimés au niveau des racines et des feuilles, et que leur niveau de transcrits est fortement et differentiellement régulé en conditions de stress salin ou osmotique et en présence d'hormones, ce qui suggère que ces différents systèmes jouent des rôles propres et diversifiés dans la plante. L'analyse plus détaillée d'OsHKT2;4, a montré par expression hétérologue dans l'ovocyte de xénope que ce système possède des propriétés fonctionnelles originales: il transporte sélectivement K+ à faibles concentrations de Na+, mais co-transporte Na+ et K+ à fortes concentrations de Na+ (>10 mM). L'analyse de l'expression d'OsHKT2;4 a révélé que ce transporteur est surexprimé en condition de carence en K+ et de stress salin, suggérant qu'OsHKT2;4 pourrait jouer un rôle important dans le transport de K+ dans ces deux conditions. Enfin, un patron d'expression nouveau pour un transporteur HKT a été révélé par l'analyse de plantes transgéniques exprimant le promoteur d'OsHKT2;4 fusionné aux gènes rapporteurs GUS ou GFP : en plus d'une localisation classique dans les tissus conducteurs, une forte expression est observée dans les stomates des gaines et des limbes foliaires, suggérant un rôle dans l'osmocontractilité de ces cellules.Mots clés: Oryza sativa, transport de potassium, transporteur HKT, Na+-K+ co-transporteur, électrophysiologie, ovocyte de xénope, localisation tissulaire, PCR quantitative, stress salin / Efficient uptake of K+ from the soil solution is essential for plant development. When plants are grown on a soil rich in NaCl, the maintenance of an efficient and selective uptake of K+ and the control of Na+ export from roots to shoots are crucial for plant survival. In plants, transporters belonging to the HKT (Highaffinity K+ Transport) family have been sorted in two subfamilies based on phylogenetic grounds and functional properties. Subfamily 1 members transport selectively Na+. Several of them have been shown to play major roles in plant adaptation to salt stress by preventing excessive accumulation of Na+ in shoots. Subfamily 2 members are thought to co-transport Na+ and K+, at least when expressed in heterologous systems. Their roles in planta, especially their potential role in K+ transport, are still largely unknown. I have been interested in different K+ and/or Na+ transport systems in rice, mostly belonging to the HKT family. For their characterization, different approaches have been used: electrophysiology (two-electrode voltage-clamp after expression in Xenopus oocytes), cell biology, reverse genetics and real-time PCR. Realtime RT-PCR analyses on the whole family of rice HKT transporters (4 members in both subfamilies) showed that the expression level in roots and leaves of these different systems is variable, and is differentially regulated by salt and osmotic stresses as well as by hormonal treatments, which suggests that these transporters have diverse and differentiated functions in the plant. A detailed analysis of OsHKT2;4 revealed original functional properties: this HKT transporter was indeed shown to be K+-selectively in the presence of low external Na+, but to switch to Na+ and K+ co-transport mode at high (>10 mM) Na+ concentrations. Expression analysis of OsHKT2;4 showed that this transporter is overexpressed upon salt stress and K+ shortage, which suggests that it could play an important role in K+ transport in these two conditions. At last, a new expression pattern for an HKT transporter was evidenced through the analysis of transgenic rice plants expressing OsHKT2;4 promoter fused to the GUS or GFP reporter genes: in addition to a classical localization in vascular tissues, expression of OsHKT2;4 was observed in stomata, suggesting a role for OsHKT2;4 in osmotic regulation in these cells
105

Diversidade e potencial biotecnológico de Pseudomonas spp. de sedimentos de manguezais. / Diversity and biotechnological potential of Pseudomonas spp. from mangrove sediments.

Luciana Aparecida Avila 24 April 2012 (has links)
Os manguezais estão localizados na interface entre o continente e o oceano em regiões intertropicais, possuindo condições ambientais únicas. O objetivo deste trabalho foi avaliar a diversidade e o potencial biotecnológico da comunidade de Pseudomonas spp. em sedimentos de manguezais com diferentes estágios de preservação, no Estado de São Paulo. A diversidade de Pseudomonas spp. foi avaliada por meio da detecção do gene 16S rRNA e do gene gacA de isolados de Pseudomonas, como também por métodos independentes de cultivo. Dos 83 isolados obtidos, 55 foram positivos para o gene gacA. De acordo com as análises de DGGE e da biblioteca de clones, os diferentes manguezais apresentam comunidades de Pseudomonas bem distintas. Entre as espécies caracterizadas, P. nitroreducens e P. fluorescens foram predominantes. Pseudomonas de manguezais halotolerantes produzem AIA, ACC deaminase, NH3, solubilizam fosfato e fixam nitrogênio. Estudos demonstraram o potencial de Pseudomonas para promoção de crescimento de milho e redução dos efeitos do estresse salino sobre a planta. / Mangroves are located at the interface of continent and ocean in intertropical regions, possessing unique environmental conditions. The objective of this study was to evaluate the diversity and biotechnological potential of Pseudomonas spp. community in mangrove sediments under different stages of preservation in the São Paulo state. Pseudomonas spp. diversity was analyzed through the detection of 16S rRNA gene and gacA gene of Pseudomonas isolates, as well as through cultive independent methods. Of the 83 isolates, 55 were positive for gacA gene. According to DGGE and clone library analysis, the different mangroves showed very distinct Pseudomonas communities. Among the characterized species by 16S rRNA gene, P. nitroreducens and P. fluorescens were dominant. Pseudomonas mangrove halotolerant produce IAA, ACC deaminase, NH3, solubilize phosphate and fix nitrogen. Studies demonstrated the potential of Pseudomonas for maize growth promotion and reduce the effects of salt stress on the plant.
106

Přirozené zdroje a ztráty chlorovaných uhlovodíků v ekosystému smrkového lesa / Natural sources and sinks of volatile chlorinated hydrocarbons in the spruce forest ecosystem

Štangelová, Pavla January 2016 (has links)
Biogeochemical cycle of chlorine, particularly the formation of organically bound chlorine is still not well understood. In continental ecosystems chlorides act as source of chlorine, and also as a stress factor. Chlorides originate from precipitation of marine cloud masses. Organically bound chlorine in the environment is formed naturally by biotical and abiotical way. The biotical factors are microorganisms, plants, soil enzymes and animals. Volatile chlorinated hydrocarbons (VOCl) represent one group of organically bound chlorines. Several volatile chlorinated hydrocarbons reacts with atmospheric ozone, consequently causing depletion of the ozone layer. The most important known terrestrial source of volatile chlorinated hydrocarbons is the spruce forest ecosystem. Chlorine in the soil can be transformed by microorganisms into organically bound chlorine or translocated by transpiration stream in plants, where they are also transformed enzymatically into organically bound chlorine, and both of them can be emitted into the atmosphere. Too large amounts of chloride can affect the physiological functions of plants. In this thesis experiments were designed for measuring the natural emissions of volatile halogenated hydrocarbons from plants and fungi, with various periods of incubation, and also to...
107

Certain Agave Species Exhibit the Capability to be Moderately Productive Under Conditions of High Salt and Drought Stress

Bergsten, Steven J. 13 December 2013 (has links) (PDF)
Water availability and arable lands are increasingly limiting resources in many parts of the U.S., particularly in semi-arid and arid regions. As a means of addressing food and fuel demands associated with burgeoning population growth, highly productive and water-use efficient crops need to be identified. One potential crop, Agave, merits consideration and evaluation due to its putative capability to provide sustenance and energy despite growing in water-limited regions and on marginal soils. However, little is known regarding the productivity these succulent plants will have under growing conditions of the Southwest, where high concentrated saline soils are abundant, and water is often limited. The objectives of these studies were to determine the effects of high levels of salinity and different volumetric water content levels (VWC) on plant growth, biomass accumulation, and nutrient uptake. I used a hydroponic study to compare the effects of four salinity treatments (0.5, 3, 6, and 9 dS m-1) on productivity of four Agave species (Agave parryi, Agave utahensis ssp. kaibabensis, Agave utahensis ssp. utahensis, and Agave weberi). In a second study, an automated irrigation system was established to examine four pre-determined VWC threshold set-points and simulated a gradient of well-watered to drought conditions, to evaluate how A. weberi would respond to varying levels of water availability. Salinity concentrations did not significantly affect root and plant dry weight accumulation in A. weberi, but all other agave plants experienced less biomass accumulation under high saline conditions (>6 dS m-1). Seedlings of A. utahensis were two times more likely to die in the two highest saline treatments (6 and 9 dS m-1) than the two lower treatments (0.5 dS m-1 and 3 dS m-1). Calcium, Mg, S, Mn levels decreased in both A. parryi and A. weberi at higher salinity levels. Agave weberi was able to tolerate salinity, but it also experienced lower biomass production ≤3 dS m-1. In the water-stress study, Agave weberi plants experienced a decrease of 2.11 g as compared to plants in the highest treatment. Plants in the intermediate VWC treatments had similar dry mass values as those in the highest treatment, which suggests that this species could have moderately high yields under limited water conditions, and consequently should be evaluated as a potential bioenergy crop for semi-arid regions, such as the U.S. Southwest. Agave shows considerable potential to be grown in arid and semi-arid regions that are moderately high in salinity and have limited water availability. Indeed, the cultivation of Agave as a crop appears to be a viable option for many areas of the Southwest. While some of the Agave species evaluated were quite productive under moderate salt and water stress, it is uncertain if growth will be significantly reduced if under these stress conditions for periods longer than 3 months.
108

Characterization of <i>Linum usitatissimum</i> Plasticity and Soil Microbiome Communities: Insights from Salt and Nutrient Stress

Evans, Ellyn 26 August 2022 (has links)
No description available.
109

Unravelling the Physiological and Genetic Adaptation of Grafted Pepper under Saline and Hydric Stresses

López Serrano, Lidia 22 February 2021 (has links)
Tesis por compendio / [ES] El pimiento es un cultivo muy importante a nivel mundial, pero es sensible a la falta de agua y a la salinidad. No obstante, se puede mejorar la tolerancia mediante la técnica del injerto. El Instituto Valenciano de Investigaciones Agrarias y la Universidad Politécnica de Valencia han realizado estudios previos para seleccionar accesiones de pimiento tolerantes a ambos estreses, utilizando después una selección de ellos como portainjertos para estudiar los mecanismos fisiológicos de tolerancia y aumentar la rentabilidad de su producción. Sin embargo, después de todos estos estudios, la información disponible es limitada. En este sentido, los objetivos que se han planteado en esta tesis doctoral fueron: i) seleccionar nuevas accesiones tolerantes de pimiento a la salinidad y escasez de agua, para aumentar la disponibilidad de genotipos tolerantes y usarlos en futuros programas de mejora, con el objetivo final de obtener nuevos portainjertos con una tolerancia mejorada; ii) identificar a corto plazo los mecanismos fisiológicos de tolerancia al estrés hídrico de una accesión tolerante (A25) usada como portainjerto; iii) identificar a corto plazo los mecanismos fisiológicos de tolerancia a la salinidad de un nuevo portainjerto híbrido tolerante (NIBER®); iv) encontrar los principales mecanismos moleculares de tolerancia a la salinidad de una accesión tolerante (A25) respecto a una sensible (A6) desde el punto de vista transcriptómico. Una vez realizados estos ensayos, en primer lugar, pudimos relacionar positivamente la capacidad fotosintética y el mantenimiento del crecimiento en plantas tolerantes a estrés hídrico y salino, tanto sin injertar como injertadas; de hecho, basándonos principalmente en esta relación, seleccionamos las accesiones A34 y A31 como tolerantes a estrés salino e hídrico, respectivamente. Además, demostramos que el papel principal de la prolina en los estreses estudiados no está ligado a la bajada de potencial osmótico; sin embargo, se identificaron funciones protectoras de este aminoácido que, junto a otras moléculas antioxidantes como los fenoles, contribuyen en el pimiento a aumentar la tolerancia. Igualmente importante es el peróxido de hidrógeno, que se relacionó con la capacidad antioxidante en pimiento, funcionando como molécula señalizadora en estrés salino. Asimismo, la bajada de ácido abscísico y la modificación de la expresión de genes relacionados han sido también relevantes en condiciones de estrés salino para mantener la apertura estomática y, por consiguiente, el crecimiento en plantas sin injertar e injertadas sobre portainjertos tolerantes. Se demostró también que la limitación del transporte de Na+ a hojas, así como el transporte y acumulación eficiente de K+ en raíces y hojas, son esenciales para alcanzar la homeostasis iónica y por tanto la tolerancia en pimientos injertados sobre portainjertos tolerantes. Para finalizar, el estudio de las rutas moleculares fue una herramienta útil para confirmar el comportamiento fisiológico y agronómico de una accesión de pimiento previamente clasificada como tolerante a la salinidad, descubriendo además nuevos mecanismos no referenciados hasta el momento. Los genes diferencialmente expresados encontrados estaban relacionados con la señalización hormonal, el crecimiento y desarrollo de las plantas, la fotoprotección, la regulación de los transportadores de iones y la detoxificación de ROS. / [CA] El pimentó és un cultiu molt important mundialment, però és sensible a la falta d'aigua i la salinitat. No obstant això, es pot millorar la tolerància mitjançant la tècnica de l'empelt. L'Institut Valencià d'Investigacions Agràries i la Universitat Politècnica de València han fet estudis previs per a seleccionar accessions de pimentó tolerants a tots dos estressos i a continuació, una selecció d'entre elles es va utilitzar per a estudiar els mecanismes fisiològics de tolerància i augmentar la rendibilitat de la seua producció. No obstant això, després de tots aquests experiments, la informació encara és limitada. En aquest sentit, els objectius que s'han plantejat en aquesta tesi doctoral van ser: i) seleccionar noves accessions tolerants de pimentó a la salinitat i la falta d'aigua, per a augmentar la disponibilitat de genotips tolerants i usar-los en futurs programes de millora, amb l'objectiu final d'obtindre nous portaempelts amb una tolerància millorada; ii) identificar a curt termini els mecanismes fisiològics de tolerància a l'estrès hídric d'una accessió tolerant (A25) usada com portaempelt; iii) identificar a curt termini els mecanismes fisiològics de tolerància a la salinitat d'un nou portaempelt híbrid tolerant (NIBER®); iv) trobar els principals mecanismes moleculars de tolerància a la salinitat d'una accessió tolerant (A25) respecte a una sensible (A6) des d'un punt de vista de la transcriptòmica. Després de realitzar aquests assajos, en primer lloc, vam poder relacionar positivament la capacitat fotosintètica i el manteniment del creixement en plantes tolerants a l'estrès hídric i salí, tant sense empeltar com empeltades; de fet, basant-nos principalment en aquesta relació, vam seleccionar les accessions A34 i A31 com tolerants a l'estrès salí i hídric, respectivament. A més a més, vam demostrar que el paper principal de la prolina en els estressos estudiats no està lligat a la baixada de potencial osmòtic; en canvi, es van identificar diferents funcions protectores d'aquest aminoàcid, que, junt a altres molècules antioxidants com els fenols, contribueixen en el pimentó a combatre'ls. Igualment important és el peròxid d'hidrogen, que es va relacionar amb la capacitat antioxidant del pimentó, funcionant com a molècula senyalitzadora a l'estrès salí. Així mateix, la baixada d'àcid abscísic i la modificació de l'expressió de gens relacionats de la seua senyalització han sigut també rellevants en condicions d'estrès salí per a mantindre l'obertura estomàtica i per tant el creixement en plantes sense empeltar i empeltades amb portaempelts tolerants. Es va demostrar també que la limitació del transport de Na+ a les fulles, així com el transport i l'acumulació eficient de K+ a les arrels i les fulles, són essencials per a aconseguir l'homeòstasi iònica i per tant la tolerància en pimentons empeltats damunt portaempelts tolerants. Per concloure, l'estudi de les rutes moleculars va ser un instrument útil per a confirmar el comportament fisiològic i agronòmic d'una accessió de pimentó prèviament classificada com a tolerant, descobrint a més nous mecanismes no trobats fins ara. Els gens diferencialment expressats trobats estaven relacionats amb la senyalització hormonal, el creixement i el desenvolupament de les plantes, la fotoprotecció, la regulació dels transportadors de ions i la detoxificació de ROS. / [EN] Pepper culture is economically very important worldwide, although it is very sensitive to suboptimal conditions of water and high salinity. However, the tolerance to these stresses can be improved by the grafting technique. Previous studies of the Valencian Institute for Agricultural Research and the Polytechnic University of Valencia have been conducted to select pepper accessions that showed tolerance to both stresses, after which a further selection of them was used as rootstocks to find physiological mechanisms of tolerance and to increase its agronomic profit. However, after all these studies, the available information in this regard is still scarce. Therefore, the objectives of this thesis were to: i) screen new tolerant pepper accessions under high salt concentrations and suboptimal water conditions, to increase the availability of tolerant genotypes to be used in future breeding programmes, with the final aim of obtaining new and improved tolerant rootstocks; ii) identify the short-term physiological mechanisms of water stress tolerance of a tolerant accession (A25) used as a rootstock; iii) identify the physiological mechanisms of short-term tolerance to salinity of a new tolerant hybrid rootstock (NIBER®); and iv) find the main molecular pathways of salinity tolerance of a tolerant accession (A25) compared to a sensitive one (A6) by a transcriptomic approach. After conducting these studies, we firstly found a positive relationship between photosynthetic capacity and growth maintenance in plants that were tolerant to water or salt stress, both grafted or ungrafted; indeed, based mainly on this relationship, we selected accessions A34 and A31 as tolerant to salt and water stress, respectively. In addition, we were able to demonstrate that the main role of proline under salinity and water scarcity is not linked herein to the drop in osmotic potential; on the contrary, we identified different protective roles that, together with other antioxidant protective molecules such as phenols, contribute to the tolerance of pepper plants to these environmental stresses. Moreover, hydrogen peroxide, a reactive oxygen species, was found to play important roles in the antioxidant capacity of pepper, working as a signalling molecule under salinity stress. Furthermore, the drop in abscisic acid concentration and its signalling deregulation were also shown to maintain stomatal aperture and thus the growth of the scion when grafted onto tolerant rootstocks and ungrafted accessions under high salt concentration conditions. It was also demonstrated that a limitation of Na+ transport to leaves, as well as a more efficient transport and accumulation of K+ in roots and leaves, are essential to reach ion homeostasis and, thus, tolerance in pepper plants grafted onto tolerant rootstocks. Finally, the study of the molecular pathways of tolerance was a useful tool to confirm the physiological and agronomical behaviour of a pepper accession previously classified as tolerant, although new mechanisms were also found. The differentially expressed genes found were linked to hormonal signalling, plant growth and development, photoprotection, regulation of ion transporters and ROS detoxification. / Quiero agradecer al Instituto Valenciano de Investigaciones Agrarias (IVIA), al Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) y al Ministerio de Ciencia, Innovación y Universidades por darme la oportunidad de disfrutar de la beca predoctoral FPI-INIA (proyectos RTA2013-00022-C02-1 y RTA2017-00030-C02-00) con la que he realizado esta tesis doctoral y he podido aprender tanto todos estos años, asistir a los congresos y realizar las estancias de investigación en el extranjero. / López Serrano, L. (2021). Unravelling the Physiological and Genetic Adaptation of Grafted Pepper under Saline and Hydric Stresses [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/162875 / Compendio
110

Mecanismos de tolerancia a estrés salino e hídrico en plantas endémicas, raras o amenazadas.

González Orenga, Sara 28 June 2021 (has links)
Tesis por compendio / [ES] La sequía y la salinidad son los factores ambientales que más afectan a las plantas, aunque en general, las plantas mediterráneas están bien adaptadas a las condiciones adversas. Las previsiones estiman que debido al calentamiento global las condiciones ambientales se volverán más estresantes, especialmente en las zonas semi-áridas y áridas como muchas áreas de la Península Ibérica. Estas condiciones pueden afectar a la presencia de muchas especies silvestres, en especial, de las que ya de por si están amenazadas, son raras o endémicas. Tanto la sequía como el estrés salino provocan la activación de una serie de mecanismos de defensa o respuesta de las plantas, que incluyen entre otros, el control del transporte iónico, la acumulación de solutos compatibles u osmolitos, y la activación de sistemas antioxidantes. Para contribuir a la conservación y/o reintroducción de las especies de interés en hábitats prioritarios se ha realizado un estudio multidisciplinar abarcando los parámetros que pueden afectar sus poblaciones, como el clima, el suelo, y la vegetación acompañante, junto a estudios comparativos sobre las respuestas a la sequía y a la salinidad. Para entender mejor los mecanismos de tolerancia se han incluido en el estudio además de los taxones de interés conservacionista, especies relacionadas genéticamente con diferentes niveles de tolerancia. El estudio presenta dos objetivos principales: i) establecer la tolerancia relativa al estrés hídrico y salino de las especies en base a su distribución en la naturaleza y en los análisis realizados en campo y, en función de la inhibición relativa de su crecimiento bajo condiciones provocadas de estrés; y, ii) evaluar los cambios bioquímicos inducidos por el estrés analizando diferentes mecanismos de respuesta (inhibición de la fotosíntesis, transporte iónico, acumulación de osmolitos, mecanismos antioxidantes). / [CA] La sequera i la salinitat són els factors ambientals que més afecten les plantes, encara que en general, les plantes mediterrànies estan ben adaptades a les condicions adverses. Les previsions estimen que a causa del calfament global les condicions ambientals es tornaran més estressants, especialment en les zones semi-àrides i àrides com moltes àrees de la Península Ibèrica. Aquestes condicions poden afectar la presència de moltes espècies silvestres, especialment, de les que ja de per si estan amenaçades, són rares o endèmiques. Tant la sequera com l'estrès salí provoquen l'activació d'una sèrie de mecanismes de defensa o resposta de les plantes, que inclouen entre altres, el control del transport iònic, l'acumulació de soluts compatibles u osmolits, i l'activació de sistemes antioxidants. Per a contribuir a la conservació i/o reintroducció de les espècies d'interès en hàbitats prioritaris s'ha realitzat un estudi multidisciplinari abastant els paràmetres que poden afectar les seues poblacions, com el clima, el sòl, i la vegetació acompanyant, al costat d'estudis comparatius sobre les respostes a la sequera i a la salinitat. Per a entendre millor els mecanismes de tolerància s'han inclòs en l'estudi a més dels tàxons d'interès conservacionista, espècies relacionades genèticament amb diferents nivells de tolerància. L'estudi presenta dos objectius principals: i) establir la tolerància relativa a l'estrès hídric i salí de les espècies sobre la base de la seua distribució en la naturalesa i en les anàlisis realitzades en camp i, en funció de la inhibició relativa del seu creixement sota condicions provocades d'estrès; i, ii) avaluar els canvis bioquímics induïts per l'estrès analitzant diferents mecanismes de resposta (inhibició de la fotosíntesi, transport iònic, acumulació de osmolits, mecanismes antioxidants). / [EN] Drought and salinity are the environmental factors that most affect plants, although in general Mediterranean plants are well adapted to adverse conditions. Predictions estimate that, due to global warming, environmental conditions will become more stressful, especially in semi-arid and arid areas, such as many areas of the Iberian Peninsula. These conditions may affect the presence of many wild species, especially those that are already threatened, rare or endemic. Both drought and salt stress cause the activation of a series of defence or response mechanisms in plants, which include, among others, the control of ionic transport, the accumulation of compatible solutes or osmolytes, and the activation of antioxidant systems. To contribute to the conservation and/or reintroduction of species of interest in priority habitats, a multidisciplinary study has been carried out covering parameters that may affect their populations, such as climate, soil and accompanying vegetation, together with comparative studies on responses to drought and salinity. To better understand tolerance mechanisms, genetically related species with different levels of tolerance have been included in the study, in addition to taxa of conservation interest. The study has two main objectives: i) to establish the relative tolerance to water and salt stress of the species according to their distribution in nature and based on field analyses and, according to the relative inhibition of their growth under stress-induced conditions; and, ii) to evaluate stress-induced biochemical changes by analysing different mechanisms (inhibition of photosynthesis, ionic transport, osmolyte accumulation, antioxidant mechanisms). / This research was partially funded by Project AICO/2017/039 from the Generalitat Valenciana. / González Orenga, S. (2021). Mecanismos de tolerancia a estrés salino e hídrico en plantas endémicas, raras o amenazadas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168443 / Compendio

Page generated in 0.0841 seconds